• Title/Summary/Keyword: Automotive Antenna

Search Result 31, Processing Time 0.022 seconds

Development of PCS and IMT-2000 Frequency Bands Antenna for Automobile using Loading Sleeve Monopole (슬리브 모노폴을 이용한 PCS 및 IMT-2000 주파수대역 차량용 안테나 개발)

  • 최광제
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.190-195
    • /
    • 2003
  • We developed a loading sleeve for Automobile, which has the PCS and IMT-2000 frequency bands. The electric characteristics of the designed sleeve monopole has SWR<1.311 and 3.0dBi in average gain for that frequency bands. In this study, the designed sleeve monopole was installed at a roof and trunk lid of vehicle. The characteristics of designed sleeve monopole was investigated by measuring SWR, input impedance and radiation pattern. The experimental results show that the efficiency of the sleeve monopole is superior th that of domestic and foreign commercial PCS antenna.

A Study on Electromagnetic Interference of Electric Vehicles with Variations of Charging Device Inlet Location (전기자동차 충전구 위치에 따른 전자파 방사특성에 관한 연구)

  • Gwon, Sunmin;Woo, Hyungu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.694-701
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, eco-friendly advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) are rapidly increasing. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are driven by electric energy and equipped with more electric systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference(EMI) test and an electromagnetic susceptibility(EMS) test. EMI test of the electric vehicles are needed not only in driving mode but also in charging mode because they must be recharged by much electric energy for driving. Depending on vehicle manufacturers, the charging device type and the location of charging device inlet in electric vehicles are various. In this paper, in order to investigate EMI of electric vehicles in charging mode in consideration of the direction of measuring antenna and the location of charging device inlet, a series of electromagnetic emission tests are conducted using three electric vehicles (neighborhood electric vehicle, electric vehicle and electric vehicle-bus). The test results show that electromagnetic emission measurements in charging mode are dependent on the direction of measuring antenna and the location of charging device inlet.

Study of EMC Optimization of Automotive Electronic Components using ECAE

  • Kim, Tae-Ho;Kim, Mi-Ro;Jung, Sang-Yong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.248-251
    • /
    • 2014
  • As more vehicles become equipped with advanced electronic control systems, more consideration is needed with regards to automotive safety issues related to the effects of electromagnetic waves. Unwanted electromagnetic waves from the antenna, electricity and other electronic devices cause the performance and safety problem of automotive components. In general, Power Integrity and Signal Integrity analysis have been widely used, but these analyses have stayed PCB level. PCB base analysis is different from radiated emission TEST condition so its results are used just for reference. This paper proposes EMC optimization technology using module level 3-dimensional radiation simulation process closed to fundamental test conditions. If module level EMC analysis, which is proposed in this study, is applied to all automotive electronics systems, unexpected EMC noise will be prevented.

Design of High Gain array antenna for 70GHz band Short Range Radar Sensor (70GHz대역 근거리레이다 센서용 고이득 배열안테나의 설계)

  • Kim, Ju-suk;Kim, Gue-chol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.402-403
    • /
    • 2018
  • 70GHz-band high gain array antenna is developed for automotive short range radar sensor. In Short-rangeradar, the gain must be high in order to increase the resolution, and the angle width must be set to secure the field of view(Fov). The proposed antenna operates at 76~81GHz and satisfies angle width $60^{\circ}$, antenna gain 15dB and the input reflection coefficient of less than -10dB within the operating frequency. Wave guide WR-10 was used to measure the antenna and results similar to the simulation results were obtained.

  • PDF

Underwater Localization using EM Wave Attenuation with Depth Information (전자기파의 감쇠패턴 및 깊이 정보 취득을 이용한 수중 위치추정 기법)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.156-162
    • /
    • 2016
  • For the underwater localization, acoustic sensor systems are widely used due to greater penetration properties of acoustic signals in underwater environments. On the other hand, the good penetration property causes multipath and interference effects in structured environment too. To overcome this demerit, a localization method using the attenuation of electro-magnetic(EM) waves was proposed in several literatures, in which distance estimation and 2D-localization experiments show remarkable results. However, in 3D-localization application, the estimation difficulties increase due to the nonuniform (doughnut like) radiation pattern of an omni-directional antenna related to the depth direction. For solving this problem, we added a depth sensor for improving underwater 3D-localization with the EM wave method. A micro scale pressure sensor is located in the mobile node antenna, and the depth data from the pressure sensor is calibrated by the curve fitting algorithm. We adapted the depth(z) data to 3D EM wave pattern model for the error reduction of the localization. Finally, some experiments were executed for 3D localization with the fast calculation and less errors.

Optimal Design of 70GHz Band Array Antenna for Short-Range Radar Sensor using The Chebyshev Polynomials (Chebyshev 다항식을 이용한 70GHz 대역 근거리 레이다 센서용 배열안테나의 최적설계)

  • Gue-Chol Kim;Joo-Suk Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • This paper presents a procedure to optimize the design of 70GHz band array antenna for automotive short range radar sensor applications using Chebyshev polynomials. SRR(: Short Range Radar) systems require a wide angle width and low Side lobe level to detect targets within close proximity while ensuring a high Field of View(FoV). The optimized antenna operates in the 76 to 81GHz frequency range, and to reduce the antenna size, we arranged 12 patches in series, achieving an SLL of 10dB, angle with of 112.5o, gain of 15.4dB and an input return loss of less than -10dB at 78GHz. In this paper, we proceed with antenna design for SRR using Chebyshev polynomials, and present an optimal design for antenna structures to be used in MRR(: Medium-Range Radar) and LRR(: Long Range Radar) applications based on this paper

77-GHz Slot Array Antenna Using PCB and ACF (PCB와 ACF를 이용한 77 GHz 슬롯 배열 안테나)

  • Yoon, Pyoung-Hwa;Kwon, Oh-Yun;Song, Reem;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.752-757
    • /
    • 2018
  • This study presents the performance evaluation results of a 77-GHz waveguide slot array antenna that was fabricated by attaching a patterned printed circuit board(PCB) on a metal block. The 77-GHz waveguide was divided into a top plate and a bottom structure. The top plate was fabricated using a patterned PCB that can implement a fine slot at low cost. The top cover was then bonded to the bottom metal structure with a waveguide trough using anisotropic conductive film. For evaluating the antenna performance, a $1{\times}16$ slot array antenna was fabricated using our proposed method and the gain and pattern were measured and compared with the simulation results. Though the measurement results demonstrate a reduction in gain of around 2.3~3.5 dB compared to the simulation results assuming ideal bonding conditions, the pattern hardly changed and the slot antenna with a gain of approximately 17 dBi at 77 GHz can be easily manufactured at a low cost using the proposed method.

The Study of DoA Estimation in Frequency Domain in Automotive Radar System (차량용 레이더 시스템에서 주파수 영역의 도래각 추정 기법에 관한 연구)

  • Choi, Jung-hwan;Choi, Ji-won;Kim, Seong-cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Convenience and safety are the key words for the automotive driving and various sensor technologies have been studied for enhanced perception of driving environments. In frequency modulated continuous wave (FMCW) radar systems, single antenna is enough for range and velocity detection of multiple targets. Multiple array antenna is needed for estimating direction of arrival(DoA). Using DoA estimation algorithm in time domain as in the conventional systems, it is difficult to distinguish vehicles lie in the same angle. In order to facilitate the enhanced angle estimation, DoA estimation algorithm is applied in frequency domain. In this paper, the method for applying multiple signal classification(MUSIC) algorithm in frequency domain is suggested and the performance is analyzed.

Design of a Rectangular Waveguide Antenna for Automotive Side and Rear Radar Sensor Applications (차량 측후방 레이더 센서용 직사각형 도파관 안테나 설계)

  • Lee, Jae-Min;Ryu, Hong-Kyun;Woo, Jong-Myung;Koo, Bon-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.42-52
    • /
    • 2012
  • In this paper, a waveguide antenna is designed and fabricated for side and rear radar sensor of vehicles in UWB (Ultra Wide Band) high band (center frequency : 9.5 GHz, -10 dB bandwidth : 600 MHz (6.4 %)). For the radar antenna, a probe fed rectangular waveguide antenna having simple structure and wide bandwidth is used. An important performance factor in this antenna is the isolation between transmitting (TX) and receiving (RX) waveguide antennas because this radar system uses TX and RX antennas separately. Thus the isolation between two antennas was simulated for E-plane and H-plane array. As a result, it was verified that the isolation of the H-plane array of the antennas is better than E-plane array, due to the TE10 mode. Therefore, H-plane arrayed waveguide antennas were mounted on a T-shaped radar module and performance of antennas was investigated. The -10 dB bandwidth of the TX and RX antenna mounted on T-shaped radar module was measured as 1000 MHz (10.52 %) and 1090 MHz (11.47 %) respectively and the isolation is less than -50 dB in the operation band. The peak gain is 7.65 dBi for the TX antenna and 7.26 dBi for the RX antenna and the beamwidth of H-plane of TX and RX antenna was measured as $64^{\circ}$ and $65^{\circ}$ respectively. Consequently, we verified that the proposed waveguide antenna is appropriate for a vehicle radar applications.

Design of UHF Band Microstrip Antenna for Recovering Resonant Frequency and Return Loss Automatically (UHF 대역 공진 주파수 및 반사 손실 오토튜닝 마이크로스트립 안테나 설계)

  • Kim, Young-Ro;Kim, Yong-Hyu;Hur, Myung-Joon;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.219-232
    • /
    • 2013
  • This paper presents a microstrip antenna which recovers its resonant frequency and impedance shifted automatically by the approach of other objects such as hands. This can be used for telemetry sensor applications in the ultrahigh frequency(UHF) industrial, scientific, and medical(ISM) band. It is the key element that an frequency-reconfigurable antenna could be electrically controlled. This antenna is miniaturized by loading the folded plates at both radiating edges, and varactor diodes are installed between the radiating edges and the ground plane to control the resonant frequency by adjusting the DC bias asymmetrically. Using this voltage-controlled antenna and the micro controller peripheral circuits of reading the returned level, the antenna is designed and fabricated which recovers its resonant frequency and impedance automatically. Designed frequency auto recovering antenna is conformed to be recovered within a few seconds when the resonant frequency and impedance are shifted by the approach of other objects such as hand, metal plate, dielectric and so on.