• Title/Summary/Keyword: Automotive Air Conditioning

Search Result 378, Processing Time 0.024 seconds

Performance Evaluation of a Parallel Flow Condenser for Automotive Air Conditioners (자동차 에어컨용 평행류 응축기의 성능평가)

  • 장혁재;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.247-253
    • /
    • 2003
  • The new shape of louver-fin has been applied to a parallel flow condenser to enhance air-side heat transfer rate lot an automotive air-conditioner R- l34a is employed as a refrigerant inside the flat tube of the condenser, This problem is of particular interest in reducing the geometric size of the automotive air conditioner The effect of air flow rate on pressure drop as well as heat transfer in air side are studied in detail. Comparison of the performance is also made with that of a conventional parallel flow condenser, which is available in the market. The results obtained indicate that the total pressure drop through the pre sent condenser is not changed, while the heat transfer rate is increased by 24% at high veto city of air flow, compared with those of the conventional condenser. The parallel flow condenser with a new shape of louver-fin could be reduced in size by 20% for the equivalent condenser capacity, compared with the conventional parallel flow condenser.

Control of the Absorption Air Conditioning System by Using Steepest Descent Method (최속 강하법을 이용한 흡수식 냉동공조시스템 제어)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.495-501
    • /
    • 2003
  • Control algorithms for the absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. The simulation results showed energy savings and the effective controls of an absorption air conditioning system.

Optimal Control Algorithm for the Dual Source Chiller Air Conditioning System (복합 열원 공조시스템의 최적 제어 알고리즘)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.881-888
    • /
    • 2004
  • Control algorithms for a dual source chiller air conditioning system were developed. These are control algorithms for the supply air temperature control, the supply header chilled water temperature control, the chiller chilled water temperature control, and the cooling tower water temperature control. These algorithms were analyzed by using a dynamic simulation program. Simulation results showed the energy savings and the satisfactory controls of an absorption and centrifugal chiller air conditioning system. Therefore, control algorithms developed for this study may effectively be used for the improved controls of the dual source chiller air conditioning system.

The Optimal Control of an Absorption Air Conditioning System by Using the Steepest Descent Method

  • Han Doyoung;Kim Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.123-130
    • /
    • 2004
  • Control algorithms for an absorption air conditioning system may be developed by using dynamic models of the system. The simplified effective dynamic models, which can predict the dynamic behaviors of the system, may help to develop effective control algorithms for the system. In this study, control algorithms for an absorption air conditioning system were developed by using a dynamic simulation program. A cooling water inlet temperature control algorithm, a chilled water outlet temperature control algorithm, and a supply air temperature control algorithm, were developed and analyzed. The steepest descent method was used as an optimal algorithm. Simulation results showed energy savings and the effective controls of an absorption air conditioning system.

Effects of Operating Parameters on Cooling Performance of a Transcritical $CO_2$ Mobile Air-Conditioning System (운전조건 변화가 $CO_2$ 자동차 에어컨 시스템의 냉방성능에 미치는 영향에 대한 실험적 연구)

  • Lee, Jun-Kyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with the research for the effects of the operating parameters that could be used for a transcritical $CO_2$ mobile air-conditioning system on the cooling performance. The experimental conditions of the performance tests for a system and components such as a gas cooler and an evaporator were suggested to compare the performance of each with the standardized test conditions. And this research presents experimental results for the performance characteristics of a $CO_2$ mobile air conditioning system with various operating conditions such as different gas cooler inlet pressures and frontal air velocities/temperatures passing through an evaporator and a gas cooler. Experimental results show that the cooling capacity was more than 5kW and coefficient of performance (COP) was more than 2.1, also. Therefore, we checked that the mobile air-conditioning system using $CO_2$ has good performance compared to that using HFC-134a.

Performance Comparison of Automotive Air conditioning System by using R134a and R152a (R134a와 R152a 냉매를 이용한 자동차용 에어컨 시스템의 성능 비교)

  • Kim, Jeong-Su;Nam, Su-Byung;Lee, Dae-Woong;Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.9-14
    • /
    • 2006
  • This study presented the feasibility of R152a refrigerant as an alternative of R134a which is used in the current automobile air conditioning system. The performance of air conditioning system installed in the actual vehicle was tested using the climate wind tunnel. The experiments were conducted at various refrigerant charge quantities and various driving conditions such as city traffic, highway traffic and parking. Same components and lubricant were used for both R134a and R152a system. The effects of air set values of thermal expansion valve on the performance were also investigated. In case of the R152a system, refrigerant charge quantity can be reduced about 20%, better performance and superior compressor durability is expected due to the lower discharge pressure compared to the R134a system.

  • PDF

An Experimental Study on the Benefit of Pre-ventilation Using Solar Sunroof (쏠라 썬루프를 이용한 주차환기 시스템의 효과에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-95
    • /
    • 2014
  • This study presented the benefit of the pre-ventilation using solar sunroof with integrated photovoltaic. Recent year, auto-makers make an effort to enhance the fuel efficiency and moreover to clean the cabin passenger's health. Solar energy, one of the alternative energies, adapted in automotive air handling system, in order to pre-ventilation when vehicle parked under the sun in summer. The power generated by a prototype solar sunroof has been used to run blower in a air handing system. And the solar sunroof was installed in a vehicle, and evaluated to find out benefit of the pre-ventilation. The effect of reducing the cabin temperature about $3^{\circ}C{\sim}10^{\circ}C$ with 20 ~ 40W power generator from solar sunroof were obtained in the pre-ventilation test. This reduced thermal load can lead to the reduction of air-conditioning operation time than that of current car. Moreover, fuel economy may increase as a results of the short use of the air-conditioning time. Additionally, Total Volatile Organic Compounds in the cabin is reduced maximum 80% than that of the current vehicle.

A System Operating Algorithm for the Effective Operation of a Multi-type Air-conditioning System (멀티형공조시스템의 효과적인 운전을 위한 시스템운전알고리즘)

  • Han Do-Young;Park Kwan-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.587-595
    • /
    • 2006
  • A system operating algorithm was developed for the effective operation of a multi-type air-conditioning system. The system operating algorithm includes control algorithms for a safety mode, an initial operating mode, a stabilization mode, a fault diagnosis mode, an efficiency mode, and a tracking mode. Various tests were performed to show the effectiveness of these algorithms. Tests showed good results for the operation of a multi-type air-conditioning system. Therefore, these algorithms developed for this study may be used for the effective control of a multi-type air-conditioning system.

Control of Heat Pump for Low Emission Diesel Engine (저공해 중소형 디젤차량 히트펌프 제어)

  • Park, Byung-Duck;Lee, Won-Suk;Won, Jong-Phil;Kwon, Sun-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 2002
  • As automotive diesel engines adopt the direct injection method for a lower level of the exhaust emission and a higher fuel efficiency, the maximum temperature of engine coolant decreases. Consequently, the total available heat source from the engine coolant decreases over 35%. However, the heating source of air-conditioning system in automobiles depends on the hot engine coolant completely, so that it is nearly impossible to control air conditioning in heating season. Therefore, the present study has been carried out to develop the air conditioning system for the high efficient heat pump type using the HFC-134a. Especially, the air conditioning system of heating has been developed at a beginning stage, when it has low heat source from small and medium sized diesel recreation vehicles. To develop a control logic system for air conditioning system which is a heat pump type with a heat recovery exchanger, its cycle characteristics has been investigated according to the opening of LEV at a bench system.

  • PDF

An Experimental Study on Performance Improvement of Automotive Air Handling System (자동차용 공기분배장치의 성능개선에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Lee, Dae-Woong;Kim, Jin-Hyuck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.622-629
    • /
    • 2007
  • Compact semi-center type automotive air handling system(AHS) is developed in this study and it's performance is compared with the conventional 3-pieces type air hand-ling system. The pressure drop is measured at component level and system level, and air flow rate and air distribution of discharge air through each ducts from air handling system are measured. System level characteristics of pressure drop at face and windshield discharge mode and air flow rate are investigated, and also temperature control linearities are tested. The volume of the air handling system package is reduced about 20%. And air flow rate increase about 5 to 20% compared to the conventional 3-pieces type air handling system at each discharge mode with significantly improved air pressure drop both component and system level. Also, air distribution and temperature controllability meet to evaluation criteria.