• Title/Summary/Keyword: Automobile engineering

Search Result 2,180, Processing Time 0.024 seconds

Physical Properties of High-Solid Coatings with Acrylic Resins Containing Acetoacetoxy Group and Allophanate-Trimer (Acetoacetoxy기 함유 아크릴수지와 Allophanate-Trimer에 의한 하이솔리드 도료의 도막물성)

  • Jo Hye-Jin;Shim Il-Woo;Park Hong-Soo;Kim Seung-Jin;Kim Seong-Kil
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.230-237
    • /
    • 2006
  • Copolymers(HSA-98-20, HSA-98-0, HSA-98+20) which we acrylic resin containing 80% solid content were synthesized by the reaction of monomers, including methyl methacrylate, n-butyl acrylate, and 2-hydroxyethyl acrylate with a functional monomer, acetoacetoxyethyl methacrylate (AAEM), which nay give improvements in cross-linking density and physical properties of films. The physical properties of prepared acrylic resins, containing AAEM, are as follows viscosities, $1420\sim5760cps$ ; number average molecular weight, $2080\sim2300g/mol$; polydispersity index, $2.07\sim2.19$ ; and conversions, $88\sim93%$. In the next step, high-solid coatings (HSA-98-20C, HSA-98-0C, HSA-98+20C) were prepared by the curing reaction between acrylic resins containing 80% solid content and isocyanate at room temperature. Various properties were examined on the film coated with the prepared high-solid coatings. The introduction of AAEM to the coatings enhanced the abrasion resistance and solvent resistance, which indicated the possible use of high- solid coatings for top-coating materials of automobile. Since the curing by viscoelastic measurement occurred in sequence of HSA-98+20C > HSA-98-0C > HSA-98-20C, it was concluded that the curing rates became faster with incresing $T_g$ values.

Development of M2M Simulator for Mobile Network using Knapsack Algorithm (Knapsack 알고리즘을 이용한 모바일 네트워크용 M2M 시뮬레이터 개발)

  • Lee, Sun-Sik;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2661-2667
    • /
    • 2013
  • Recently, at Home and abroad, Internet of Things era things(Thing) is participating as a subject of communication in human communication paradigm of existing (lot/M2M) is in full swing. Automobile, refrigerator, bicycle, until shoes, and communication functions generation of information is installed and has created a fusion of new service IT infrastructure. Its use and application are broadening to various areas and the number of devices used for it is increasing to increase the number of information transmitted for each object. When the traffic reaches its limit while each set of data is transmitted from the devices divided into each group through the mobile network, M2M communications service might not be processed smoothly. This study used the Knapsack Problem algorithm to create a virtual simulator for a smooth M2M service when the mobile network used for the M2M communications reaches its limit. The virtual simulator applies smooth processing of services from the M2M communications that should be processed first to other subsequent services when data comes to each group of devices. As the M2M technology develops to make many objects more compact in size, it would help with smoother processing of M2M services for the mobile network with fast-increasing traffic.

Performance of IEEE 802.11b WLAN Standard at In-Vehicle Environment for Intelligent U-Car System (지능형 U-Car에서 IEEE 802.11b을 이용한 차량 내 데이터 무선 랜 전송 성능 분석)

  • Lee Seung-Hwan;Heo Soo-Jung;Park Yong-Wan;Lee Sang-Shin;Lee Dong-Hahk;Yu Jae-Hwang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.80-87
    • /
    • 2006
  • In this paper, we analyze the performance of IEEE 802.11b WLAN communication between access point(AP) and mobile equipment(ME) in 2.4 GHz band with noise and interference factors. WLAN communication at in-vehicle environment is assumed as the communication between main vehicle controller and electronic device such as sensor, ECU (Electrical Control Unit) in vehicle on telematics field for implementing wireless vehicle control system. Received interference level from other system's mobile equipment in the same band and automobile noise from each part of vehicle can be the main factors that can cause increasing error rate of control signal. With these (actors, we focus on the Eb/No the BER performance of WLAN for analyzing the characteristic of interference factors by the measured bit error rate.

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Synthesis of splinter-type and plate-type potassium titanate as reinforcements in brake pad for automobile (스플린터 및 판상형 티탄산칼륨염 합성 및 브레이크 보강재로서의 평가)

  • Kim, Sung-Hun;Kim, Jong-Young;Shim, Wooyoung;Lee, Jung Ju;Kwon, Sung Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.329-337
    • /
    • 2019
  • We synthesized potassium titanates having splinter and plate shape and evaluated frictional and wear properties of brake pad using them as reinforcements in friction materials. For splinter-shaped potassium titanates, potassium tetratitanate (K2O·4TiO2, PT4) with plate shape was prepared, then K ion of the titanate was leached by acid to make potassium hexatitanate (K2O·6TiO2, PT6), which was transformed to splinter-shaped PT6 by thermal treatment at 800℃. Plate-shaped potassium magnesium titanate (K0.8Mg0.4Ti1.6O4, PMT) was prepared by adding Mg in the potassium titanate using KCl as a flux. Using PT6 and PMT as reinforcements in friction materials of brake pad, we evaluated frictional and wear properties using 1/5-scale dynamometer. According to dynamometer test results, both reinforcements shows similar friction coefficient and fade & recovery behavior to conventional material and plate-shaped PMT exhibits higher wear resistance than splinter-shaped PT6.

Model Integration of Systems Design and Safety Analysis Processes for Systematic Design of Safety-Critical Systems (안전중시 시스템의 체계적인 설계를 위한 시스템 설계 및 안전 분석 활동 모델의 통합)

  • Kim, Chang-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.363-368
    • /
    • 2016
  • In safety-critical systems (SCS), failure may result in accidents with serious damage to human beings and property. As systems become more complex and automated, the goal of acquiring safety has attracted increasing attention lately in the defense industry, as well as the rail, automotive, and aerospace industries, among others. As such, the Department of Defense and international organizations have established appropriate standards and guidelines for systems safety and design. To this end, there has been research on the processes, methods, and associated tools for safety design. However, those results do not seem to sufficiently utilize system architectural information. The purpose of this paper is to provide a more systematic approach to SCS design. To better identify potential hazards, design information at each level of system hierarchy is exploited. Based on the results, an integrated process model was developed by combining the processes of system design and safety analysis. As a case study, the resultant integrated process model was applied to the safety design of an automobile system, which shows useful results for safety evaluation.

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

Flux of Volatile Organic Compounds from Wastewater Treatment Plant (하수처리장에서 휘발성유기화합물의 FLUX)

  • Kim, Jong O;Chang, Daniel P.Y.;Lee, Woo Bum
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.91-101
    • /
    • 2000
  • The emission sources of volatile organic compounds (VOCs) are wastewater treatment plants. sanitary landfills, automobile industries, and so on. The VOCs are harmful to human beings because of their toxicity and carcinogenicity, and cause the serious air pollution problem producing ozone ($O_3$) as a result of photochemical reaction. To investigate the emission of VOCs from wastewater treatment plant, aeration basins at the City of Los Angeles' Hyperion Treatment Plant were selected and measured flux was compared with calculated flux. For compounds commonly associated with wastewater (DCM, TCM, PCE, UM, DCB, UND) and not expected in vehicle exhaust or ambient air coming off the ocean, concentrations immediately downwind of the aeration basins were a factor of ten or higher than those measured in the upwind air. The airborne flux of less degradable or non-biodegradable compounds, e.g., DCE, DCM, TCA, DCA, TCM, PCE, DCB, through an imaginary plane at the downwind side of the aeration basins was in agreement with the estimated flux from measured liquid phase concentrations. Henry's constant. aeration rate, and an assumption of bubble saturation. For several compounds (PCE, DCE, TCA), the ratio (measured flux/calculated flux) is almost unity.

  • PDF

Kinematics and Structural Analysis for 5ton cargo-truck Elecrto-Hydraulic Sliding Deck Systems Manufacturing and Design of winch system for safety (5ton 카고트럭의 전동 유압 슬라이딩 데크 시스템 개발을 위한 기구학 해석 및 전산구조해석과 안전을 위한 윈치 시스템 설계)

  • Kim, Man-Jung;Song, Myung-Suk;Kim, Jong-Tae;Ryuh, Beom-Sahng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, the basic design of the electric hydraulic sliding deck system was developed to develop the electric hydraulic sliding deck which can easily upgrade the loading and unloading of the agricultural machinery by modifying the load of the existing 5ton cargo truck. Through the kinematic analysis, The length and structure of the specimens were designed and the materials were selected for safety and economical efficiency through structural analysis. For the basic design of the sliding deck system, we surveyed the agricultural machinery to be transported and selected necessary elements. And have devised a system using a hydraulic cylinder that can meet selected factors. Through the simplified modeling and kinematic diagram, the operating structure of the sliding deck system was grasped and the minimum length and structure of the sliding deck were devised, In order to select the sliding deck material satisfying, four representative materials used in the automobile structure were selected. Selected the parts to be analyzed and compared the stresses and deformation amounts according to the material under the conditions of maximum load through simplified modeling. As a result, SS41P material was used to reduce the unit cost and to achieve safety. The winch system was designed and applied for moving up and down of the farm machinery which can not be operated.