• Title/Summary/Keyword: Automobile compressor

Search Result 50, Processing Time 0.042 seconds

Parametric Study on Performance of an Automobile Air Conditioner (차량용 에어컨의 성능에 미치는 인자에 관한 연구)

  • Park, Y.C.;Kwon, K.R.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.16-22
    • /
    • 2002
  • This study was conducted to find performance evaluation method for automobile air conditioner. Experimental facilities were constructed to simulate wide range of operating condition for the automobile air conditioner. Compressor speed was controled by variable speed electric motor and the power was measured through torque transducer and tachometer was used to measure compressor speed. Parametric studies were conducted in this study, to figure out effect of environment variables on the performance of the automobile air conditioner. The environmental variables are inlet air temperature, relative humidity and air flow rate for the evaporator and inlet air temperature and air flow rate for the condenser. Compressor speed is also changed. The results of this study shows that air flow rate of the evaporator is more sensitive to the performance of the automobile air conditioner than the other variables. However relative humidity of the inlet air of the evaporator strongly affects capacity rather that COP.

  • PDF

An Experimental Study on the Performance of Swash Plate Compressor with variations of Oil Charging Conditions (오일 충전량 변화에 따른 사판식 압축기 성능의 실험적 고찰)

  • Kim, Min-Jun;Park, Ik-Seo;Lee, Geon-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.704-709
    • /
    • 2003
  • The automobile air conditioning system generally consists of laminated type evaporator, swash plate type compressor, condenser, expansion valve and receiver drier. A swash plate type compressor has been used widely in automobile air conditioning system since 1955, because of wider operation range and better durability than other type compressors. In this study, the performance of an swash plate type compressor with variations of oil charging conditions has been investigated experimentally using the hot gas system. Further, the effects of varying compressor speed on the performance of the compressor has been discussed.

  • PDF

Experimental Study on Effects of Compressor for Automotive Air Conditioning System on Fuel Economy (차량용 에어컨 압축기가 실차 연비에 미치는 영향에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Kim, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • In this study, the effects of the compressor for the air conditioning system on the fuel economy were experimentally investigated in an actual automobile. This study aims to analyze the level of contribution of the driving torque of the compressor to the fuel economy. A torque sensor, which is directly set on the clutch of the compressor, is developed to obtain data about the compressor load, which influences the fuel efficiency, and then, the reliability of the torque sensor is verified by comparing the results with those of a torque meter in a bench test. An actual automobile equipped with the compressor and torque sensor is operated in a climate wind tunnel in which appropriate facilities are set up to evaluate the fuel efficiency. The compressor driving torque resulting from the difference in the compressor displacement is found to influence the fuel economy, and the fuel economy is found to be worsened by up to 2~3% with an around 11% increase in the compressor displacement under the same conditions.

A Study on the Production of a Compressor Piston for an Automobile Air-Conditioner using Aluminum casting/Forging (알루미늄 주조/단조 공정을 이용한 자동차용 에어컨 컴프레서 피스톤의 생산에 관한 연구)

  • Lee, Sung-Mo;Wang, Shin-Il;Kim, Hyo-Ryang;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.53-59
    • /
    • 2000
  • In this study aluminum casting experiments are carried out to reduce the grain size of a cast preform and to spheriodize its dendritic structure by adding Ti+B and Zr and to modify flaked eutectic silicon by adding Sr, And a finite element simulation is performed to determine an optimal configuration of the cast preform to be used in forging of a compressor piston for an automobile air-conditioner. When 0.15% Ti+B Zr and 0.05% Sr are added respectively into the molten aluminum alloy the finest grain in casting of the preform is obtained. It is confirmed that the optimal configuration of the cast preform predicted by FEM simulation is very useful for forging the compressor piston. After forging the cast preform of the compressor piston. the microstructure and the hardness of the cast preform is compared with those of the cast/forged product.

  • PDF

A study of the BLDC motor drive for automobile air compressor (전기자동차를 위한 컨프레샤용 BLDC Motor 구동드라이브에 관한 연구)

  • Jeong, K.S.;Jeon, J.G.;Choi, H.L.;Yu, Tao;Lee, D.H.;Lee, S.H.;Park, S.J.;Jung, T.U.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.757-758
    • /
    • 2006
  • The research is being made on the oncoming generation hybrid EV and FECV in view of energy efficiency and environment. In the future the research will be addressed on the automobile electromotive compression motor and driver which have important competitive points. In this paper, a new method that can presume location of the BLDC Moto rotor of electromotive compressor was proposed, the driver of BLDC motor was made and the possibility that it can be used in the air compressor of EV was proved.

  • PDF

A Study on the Performance Characteristics of Fin-type Heat Exchanger for the Automobile Air-Conditioners (자동차 공조용 핀형 열교환기의 성능특성에 관한 연구)

  • 홍경한;전상신;이승재;박찬수;권일욱;김재열;김병철;하옥남
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.100-105
    • /
    • 2004
  • Fin-tube type(Fin-type) heat exchanger has been tested in order to replace the heat exchanger of parallel flow type(P.F -type) which is now widly used in automobile air conditioning system The following conclusions are drawn by the comparison of the characteristics of the heat exchangers. Evaporator and condenser capacities and COP(Coefficience of performance) were varied as with the compressor speed, outdoor air temperature and air flow rate changed, which much influenced on the characteristics of the air conditioning system Evaporator and condenser capacities were increased with increasing compressor speed and outdoor air temperature. Evaporator and condenser pressures of Fin-type were decreased by 7% and 5% respectively compared with those of P.F-type. The COP of Fin-type was decreased with increasing outdoor air temperature and compressor speed. The COP of P.F-type was decreased by 14% compared with that of Fin-type.

Computer Simulation of Automobile Air-Conditioners (자동차 에어컨 컴퓨터 시뮬레이션)

  • Kim, H.J.;Jung, D.S.;Kim, C.B.;Kim, K.H.;Kang, J.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.240-253
    • /
    • 1996
  • The refrigeration cycle of automobile air-conditioners is simulated in an effort to provide a computational tool for optimum thermodynamic design. In the simulation, thermodynamic and heat transfer analysis was performed for the four major components : evaporator, condenser, compressor, and expansion valve. Effectiveness-NTU method was used for modeling both evaporator and condenser. The evaporator was divied into many subgrids and simultaneous cooling and dehumidifying analysis was performed for each grid to predict the performance accurately. Blance equations were used to model the compressor instead of using the compressor map. The performance of each component was checked against the measured data with CFC-12. Then, all the components were combined to yield the total system performance. Predicted cycle points were compared against the measured data with HFC-134a and the deviation was found to be less than 5% for all data. Finally, the system model was used to predict the performance of CFC-12 and HFC-134a for comparison. The results were very reasonable as compared to the trend deduced from the measured data.

  • PDF

Analytical Study on the Structural Strength of an Air Compressor for Main Engine Starting of 22000TEU Class Container Ships (22000TEU급 컨테이너선박의 메인 엔진 시동용 공기압축기의 구조 강도 해석에 관한 연구)

  • Kim, Soon-Kyoung;Lee, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.60-67
    • /
    • 2015
  • The compressor is used for many fields not only in the industrial sector, but also as a general household product. The energy consumption required for the compressor operation is very large. The reciprocation compressor is widely used as an air compressor. Regarding the reciprocating air compressor, the discharge of the gas compacted by the method of compressing the gas by using the oscillation of the piston is generated by the piston reciprocation 1 church 1 number. When compressing after compressing the air by the oscillation of the piston, the marine reciprocating air compressor is the vibration generated in the compressor and surrounding structure due to the energy of the generated inertia. If the effect of these harmful elements can be reduced, it supports the service of the vessel. In addition, accidents generated by the noise of the vibration can be prevented. Therefore, in this research, firstly, the structural analysis of the piston part was performed, the safety factor in all results was drawn based upon this, and the reliability of the interpretation was examined in order to create the optimal design for the air compressor.