• Title/Summary/Keyword: Automobile Rear Frame

Search Result 12, Processing Time 0.015 seconds

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

A Study on Stability Estimation of a Orchard Vehicle using Multi-Body Dynamic and Finite Element Analysis (다물체 동역학 및 유한요소 해석을 통한 과수원용 작업차량 안정성 평가에 관한 연구)

  • Han, Chang-Woo;Son, Jae-Hwan;Park, Kee-Jin;Jang, Eun-Sil;Woo, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4142-4148
    • /
    • 2013
  • Because of effective fruit growing and management in the slope land, the use of orchard vehicle with lifting utilities has been increased. For this reason the study on the stability of that vehicle for worker's safety is needed. This study is investigated on the stability estimation of orchard vehicle with four wheels and dual rectangular-type lifting utilities which can be moved on the dirt sloping load. Through the multi-body dynamics analysis on the vehicle mechanism, overturning angles of 19.2 and $34.6^{\circ}$ in the right-left and front-rear direction can be calculated. It is determined tractive resistances and required powers of the wheels. And through the finite element analysis on the frame of lifting utility its maximum von-Mises stress is 146 MPa and it is structural stable. Therefore it is known that the orchard vehicle with wheels and lifting utilities has static and dynamic stability.