• Title/Summary/Keyword: Automobile Rear Frame

Search Result 12, Processing Time 0.037 seconds

A Study for Three-Dimensional Die Design of Automobile Rear Frame (자동차용 리어프레임의 3차원 금형설계에 관한 연구)

  • 정효상;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.163-168
    • /
    • 2000
  • In this paper, a 3-D computer-aided die design process was developed for automobile rear frame with drawing, trimming, flanging, cam-piercing and piercing for tool design. The tool design has been done using Pro/Engineer on a personal computer. It is composed of four stations. The goal of this research is to apply each of stations for the standard tool specification to each station.

  • PDF

Analytical Study on the Effect of Forming Process on Springback of an Automobile Rear Frame (성형법에 따른 자동차 리어 프레임의 스프링백 해석대비)

  • Song Y. J.;Jung H. S.;Hahn Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.63-67
    • /
    • 2001
  • Springback after drawing and trimming is regarded as one of the most influential factors during forming structural frames since the part dimensions have dominant effect on assembly quality at later stages. In this study, analytical results were obtained from a commercial FEM package for an outer rear frame of an automobile. In terms of springback and twist the effect of forming process is compared and discussed between open and closed-ends forming

  • PDF

A Study on the Characteristics of springback about an automobile rear side frame (자동차 리어사이드 프레임에 대한 스프링백 특성연구)

  • 신용승
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.57-61
    • /
    • 1999
  • Springback after forming is the critical factor affecting the product quality. It is very difficult to predict the amount of springback not only because of complex geometry and material characteristics of the stamping product but because the methodology has not been established. In this study springback mechanism is introduced and experimental tryout and computer simulation are carried out for die design of automotive rear side frame. Futher springback was verified by comparing the result of computer simulation with the measured tryout result.

  • PDF

Light-weight Design of Automotive AA6061 Rear Sub-frame Based on CAE Simulation (CAE 해석을 이용한 자동차용 AA6061 리어 서브-프레임의 경량화 설계)

  • Kim, Kee-Joo;Lim, Jong-Han;Park, Jun-Hyub;Choi, Byung-Ik;Lee, Jae-Woong;Kim, Yoon-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2012
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger rear sub-frame have been studied without sacrificing the safety of rear sub-frame. In this study, the weight reduction design process of rear sub-frame could be proposed based on the variation of von-Mises stress contour by substituting an AA6061 (aluminum 6061 alloy) having tensile strength of 310 MPa grade instead of SAPH440 steels. In addition, the stress ratio variations (stress over fatigue limit) of the rear sub-frame were examined and compared carefully. It could be reached that this approach method could be well established and be contributed for light-weight design guide and the optimum design conditions of the automotive rear sub-frame development.

Hydro-forming Process of Automotive Rear Sub-frame by Computer Simulation (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 리어 서브-프레임의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Sung, Chang-Won;Baik, Young-Nam;Lee, Yong-Heon;Bae, Tae-Sung;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.38-43
    • /
    • 2008
  • The hydroforming technology has been spreaded dramatically in automotive industry last 10 years. Itmay cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower springback, improved strength and durability and design flexibility. In this study, the whole process of rear sub-frame parts development by tube hydroforming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Kim, Jae-Hyun;Choi, Byung-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

Damageability, Repairability of Frame Type Passenger Vehicles at Low Speed 40% Offset Crash Test (저속40%옵셋 충돌시험을 통한 프레임형 승용차량의 손상성수리성에 관한 연구)

  • 박인송;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.127-133
    • /
    • 2003
  • For the purpose of evaluation the damage repairability of a Frame Type Passenger vehicle which experienced a Low Speed 40% Offset front and rear Crash Test. tests were made according to the RCAR testing procedures. Test results concluded ; (1) The deceleration at C.G(center of gravity) off 6.9∼11.39 was similar to that for the vehicle. The airbag system was found to affect neither the passenger's safety nor the savings of the repairing costs. (2) In order to improve the repairability of the Frame Type Passenger vehicle after collision should be a higher crash performance of the bumper on the RCAR standards.

A Study on the Damageability and Repairability of the Car Bumper Systems with Gas Tube (정면 오프셋 충돌시 가스튜브를 이용한 차량용 범퍼의 손상성, 수리성에 대한 연구)

  • 조휘창;박인송
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.134-139
    • /
    • 2003
  • The car crash accidents in low speed occurs most frequently. Damage on a conventional bumper after the car accident causes the bumper to get fixed most of time. This study shows how a gas tube bumper reduces a damageability and increase repairability after the car accidents. The 15 km/h 40% offset front and rear crash test recommended by RCAR (Research council for automobile repairs) standard was performed and evaluated damages on the gas tube bumper by the pendulum impact tester. In this study, the gas tube bumper reduces damageability and increases repairability after car crash accidents. In addition, car frame design to apply the gas tube bumper may consider to be changed.

A Study on the Vibration Characteristic of Slip-In Tube Propeller Shaft in FR Automobile (후륜 구동 자동차의 슬립 인 튜브 프로펠러 샤프트의 진동특성에 관한 연구)

  • Lee, H.J.;Hwang, J.H.;Kim, S.S.;Byun, J.M.;Kim, E.Z.;Cha, D.J.;Kang, S.W.;Byun, W.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.309-313
    • /
    • 2006
  • Many researchers have studied on the lightness of automobile. These researches are such as a body shell, sub frame, fuel tank, engine etc. The transmission Part is a magnitude one in the aspect of weight. A drive shaft (propeller shaft) transmits the engine power to rear differential gear assembly. It is used in the compact car that is a single drive shaft. But in the case of long body cars such as SUV (Sports Utility Vehicle), truck and large vehicle, two or three divided drive shaft are used to prevent the vibration damage from a drive shaft that has been taken high torsion and rotation. This multi-divided drive shaft structure is so heavy because it is assembled by yoke, center bearing and solid spline axis. When the rear axle move up and down, the spline shaft adjust the variation of a length between the transmission and rear axle gearbox. In this paper, it is studied in the experimental method that is a bending vibration characteristic of slip in tube shaped propeller shaft. This type propeller shaft is developed to combine the spline axis with drive shaft and can be light in weight of transmission part.

  • PDF

Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement (차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석)

  • Kim, Kee-Joo;Ju, Hyung-Jun;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.