• Title/Summary/Keyword: Automobile Module

Search Result 138, Processing Time 0.029 seconds

Development of the Machine Vision System for Inspection the Front-Chassis Module of an Automobile (자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발)

  • 이동목;이광일;양승한
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.84-90
    • /
    • 2004
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influence on driver directly and hence it must be solved on the preferential basis. In the present research, an automated vision system has been developed to inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance of front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

The development of the machine vision system to inspect the front-chassis module of an automobile (자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발)

  • 이동목;이광일;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.245-250
    • /
    • 2003
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influenced on driver directly and hence it must be solved on the preferential basis. In the present research an automated vision system has been developed th inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

  • PDF

Integrated Design System to perform Fatigue Durability Analysis of Automobile Suspension Module (자동차 서스펜션 모듈 피로내구해석을 위한 통합설계시스템 개발)

  • Han, Seung-Ho;Lee, Jai-Kyung;Lee, Tae-Hee;Jang, Kwang-Sub;Kwon, Tae-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1652-1657
    • /
    • 2007
  • Designer must cope with frequent changes in geometric information of automobile suspension module in the early stage of the design process. The authors developed the PSG(Parametric Set Generator) to create parametric models and to change geometric information concerning the lower arm, which is one of the important parts of the automobile suspension module. CAD models provided from the PSG can be utilized to assess fatigue durability via the FE modeling support system. This system provides easy and fast FE-modeling for a static and durability analysis of the lower arm. The PSG and the FE modeling support system are integrated using the e-engineering framework based on the JADE platform. In this study, a durability analysis as a case study for the lower arm manufactured at H company is performed, and the efficiency obtained is discussed.

  • PDF

Dimensional Analysis for the Front Chassis Module in the Auto Industry (자동차 프런트 샤시 모듈의 좌표 해석)

  • 이동목;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

Intelligent Air Quality Sensor System with Back Propagation Neural Network in Automobile

  • Lee, Seung-Chul;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.468-471
    • /
    • 2005
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. One chip sensor module which include above two sensing elements, humidity sensor and bad odor sensor was developed for AQS (air quality sensor) in automobile. With this sensor module, PIC microcontroller was designed with back propagation neural network to reduce detecting error when the motor vehicles pass through the dense fog area. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation. One chip microcontroller, Atmega128L (ATmega Ltd., USA) was used. For the control and display. And our developed system can intelligently detect the bad odor when the motor vehicles pass through the polluted air zone such as cattle farm.

  • PDF

Internal flow characteristics inside an automobile HVAC according to temperature operation mode (온도조절 모드에 따른 차량용 공조장치 내부 유동특성)

  • Ji, Ho-Seong;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.687-688
    • /
    • 2008
  • Air flow of inside automobile HVAC module has been visualized using a high-resolution PIV technique with varying the temperature operation mode. The PIV system consists of a 2-head Nd:YAG laser(125 mJ), a high-resolution CCD camera(2K x 2K), optics and a synchronizer. A real automobile HVAC module was used directly with slight modification for clear optical windows. Some parts of the HVAC module casing were replaced with transparent windows for capturing flow images with laser light sheet beam illumination. Time-averaged velocity field were measured in three temperature control modes. Flow characteristics of the air-conditioned air flow in the automobile HVAC system were evaluated.

  • PDF

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Development of Machine Vision System and Dimensional Analysis of the Automobile Front-Chassis-Module

  • Lee, Dong-Mok;Yang, Seung-Han;Lee, Sang-Ryong;Lee, Young-Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2209-2215
    • /
    • 2004
  • In the present research work, an automated machine vision system and a new algorithm to interpret the inspection data has been developed. In the past, the control of tolerance of front-chassis-module was done manually. In the present work a machine vision system and required algorithm was developed to carryout dimensional evaluation automatically. The present system is used to verify whether the automobile front-chassis-module is within the tolerance limit or not. The directional ability parameters related with front-chassis-module such as camber, caster, toe and king-pin angle are also determined using the present algorithm. The above mentioned parameters are evaluated by the pose of interlinks in the assembly of an automobile front-chassis-module. The location of ball-joint center is important factor to determine these parameters. A method to determine the location of ball-joint center using geometric features is also suggested in this paper. In the present work a 3-D best fitting method is used for determining the relationship between nominal design coordinate system and the corresponding feature coordinate system.

Development of a software based calibration system for automobile assembly system oriented AR (자동차 조립시스템 지향 AR을 위한 소프트웨어 기반의 캘리브레이션 시스템 개발)

  • Park, Jin-Woo;Park, Hong-Seok
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Many automobile manufacturers are doing experiment on manufacturing environments by using an augmented reality technology. However, system layout and process simulation by using the virtual reality technology have been performed actively more than by using the augmented reality technology in practical use so far. Existing automobile assembly by using the augmented reality requires the precise calibrating work after setting the robot because the existing augmented reality system for the automobile assembly system configuration does not include the end tip deflection and the robot joints deflection due to the heavy weight of product and gripper. Because the robot is used mostly at the automobile assembly, the deflection problem of the robot joint and the product in the existing augmented reality system need to be improved. Moreover camera lens calibration has to be performed precisely to use augmented reality. In order to improve this problem, this paper introduces a method of the software based calibration to apply the augmented reality effectively to the automobile assembly system. On the other hand, the camera lens calibration module and the direct compensation module of the virtual object displacement for the augmented reality were designed and implemented. Furthermore, the developed automobile assembly system oriented AR-system was verified by the practical test.