• Title/Summary/Keyword: Automobile Dynamic

Search Result 231, Processing Time 0.028 seconds

Dynamic Stress Analysis of joint by Practical Dynamic Load History (실하중 이력에 의한 조인트의 동적강도해석)

  • ;;;Akira Simamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

Mobile Robot Driving using Moving Window

  • Choi, Sung-Yug;Kang, Jin-Gu;Hur, Hwa-Ra;Ju, Jin-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.758-761
    • /
    • 2003
  • This paper introduces a method that can detect obstacles and corridor environments from the images captured by a CCD camera in an automobile or mobile robot is proposed. Processing the input dynamic images in real time requires high performance hardware as well as efficient software. In order to relieve these requirements for detecting the useful information from the images in real time, a "Moving Window" scheme is proposed. Therefore, detecting the useful information, it becomes possible to search the obstacles within the driving corridor of an automobile or mobile robot. The feasibility of the proposed algorithm is demonstrated through the simulated experiments of the corridor driving.

  • PDF

Robust Optimization of the Automobile Rearview Mirror for Vibration Reduction (승용차용 후사경의 진동 저감을 위한 강건최적설계)

  • 황광현;이광원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.198-206
    • /
    • 1999
  • An automobile outside rear view mirror system has been analyzed and designed to reduce vibration with a finite element model. model analysis is conducted for the calculation of natural frequencies. harmonic analysis is utilized to estimate the displacements of the glass surface under dynamic loads. The model is verified with the vibration experiment of the parts and the assembled body. The structure of the mirror system is optimized for the robustness defined by the Taguchi concept. At first, many potential design variables are defined. Final design variables are selected based on the amount of contribution on the objective function. That is, sensitive variables are chose. The SN ratio in the Taguchi method is replaced by an objective function with the mean and the standard deviation of the quality characteristic. The defined objective function is appropriate in the structural design in that the vibration displacements are minimized while the robustness is improved.

  • PDF

Dynamic Analysis of Automobile Collisions with Friction (마찰력이 수반된 자동차 충돌의 동역학적 해석)

  • Han, I.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.1-11
    • /
    • 1994
  • The most commonplace of collisions that directly affect people is that of vehicles. Safety studies have noted a correlation between vehicle occupant injury severity and velocity changes. Methods for estimating collision velocity changes are discussed here. This topic is part of what is referred to as accident reconstruction. Only planar collisions are considered. When a vehicle collides with another, impact dynamics with friction should be considered. This paper presents a general analysis methodology of impact. must dynamics incorporating friction. The presence of friction between sliding contacts during the impact makes the problem difficult since the events such as reverse sliding or sticking, which may occur at different times throughout the impact, must be determined. This paper uses the results of RICSAC experiments for verifying the developed methodology. The analysis and experimental results agree well.

  • PDF

A Study on the Weldability for Automobile Under body Center floor with Nd:YAG laser (Nd:YAG 레이저를 이용한 자동차 언더바디 센터플로어에 대한 용접성 검토)

  • Yu, Sang-Hyeon;Kim, Gwan-Hui;Yun, Jae-Jeong;Yu, Hyo-Jeong;Kim, Seong-Se
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.199-202
    • /
    • 2007
  • The center floor is a part of underbody of cars. The assembling method is mostly a resistant spot welding. But the resistant spot welding has many demerits in productivity such as low welding speed, large spatter occurring, hard to verify the welding quality. The laser welding has many merits such as high welding speed, high static and dynamic weld strength. So the laser welding has been studied to substituted the resistant spot welding. Therefore, in this study, as a pre-evaluation stage for replacing the resistance spot welding with laser in production of automobile parts, the weldability of cold rolled and zinc coated steel sheets is studied and also evaluated the weld strength by the tensile shear test. And the shape of weld bead appearances and micro structure of the weld bead section is also evaluated.

  • PDF

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

The Detection of Lanes and Obstacles in Real Time Using Optimal Moving Window

  • Park, Sung-Yug;Ju, Jae-Yul;Lee, Jang-Myung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.889-893
    • /
    • 2000
  • In this paper, a method to detect lanes and obstacles from the images captured by a CCD camera fitted in an automobile is proposed, and a new terminology “Moving Window” is defined. Processing the input dynamic images in real time can cause quite a few constraints in terms of hardware. In order to overcome these problems and detect lanes and obstacles in real time using the images, the optimal size of “Moving Window” is determined, based upon road conditions and automobile states. The real time detection is made possible through the technique. For each image frame, the moving window is moved in a predicted direction, the accuracy of which is improved by the Kalman filter estimation. The feasibility of the proposed algorithm is demonstrated through the simulated experiments of freeway driving.

  • PDF

Acoustic Noise Source Identification in the Automotive Industry (자동차의 음향잡음의 원인규명 방안)

  • Hall, Paul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.91-97
    • /
    • 1996
  • We have all heard sounds that did not sound "right" while riding in an automobile. Objectionable sounds are difficult to find and understand because the sound field is complex and dynamic in the near field of an automobile. Many different noise sources and transmission paths must be understood before an engineering change can be recommended. This paper reviews the fundamental characterization of sound and chscusses the Sound Intensity measurement technique. Sound intensity measurements locate sources and sinks of acoustic energy. Used with narrowband analysis equipment, acoustic noise sources can be identified. Sound intensity measurements are made -in-situ and do not require specmi anechoic facilities. The measurement results in a vector representation of the near field sound field and can discriminate between multiple sound sources.d sources.

  • PDF

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

Mathematical Model of Shock Absorber for Performance Prediction of Automobile

  • Park, Jae-Woo;Lee, Jong-Heon;Kim, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.467-478
    • /
    • 2003
  • Automotive shock absorber may not be regarded as only one(simple) damping machine because it is composed of many components, and shows non-linear damping characteristics. No matter how advanced form of shock absorber is developed, the oil shock absorber can not be neglected. because their structures are based on the oil shock absorber. Therefore it is essential to accurately analyze the dynamic characteristics of oil shock absorber. It stands mainly roi damper valve tuning which nowadays is still exhaustively done by means of ride work. In this study, damping mechanism and dynamic characteristics for oil shock absorber of twin tube type are analyzed, based on the mathematical model considering internal flow and pressure. For the reliability of numerical prediction. the database is constructed within the limit of adequate reliability. Finally, the programmed system that gives out necessary specification by inputting damping specification and tolerance is to be constructed.