• 제목/요약/키워드: Automobile Body Panel

검색결과 33건 처리시간 0.025초

TRIP형 고장력강판의 부품적용 기술개발 (Technical Development using High Strength Steel of mP Type on Automobile Parts)

  • 류성지;이상제;이규현;이문용
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.46-53
    • /
    • 2002
  • The expolitation of substitute material and new manufacturing technology of the automobile body panel for next generation cars have been steadily professed by advanced automobile companies. High strength steel of TRIP (Transformation of Induced Plasticity) type is developed in response to demands about crash safety and high strength of automobile. In this study, basic technologies can fix up problems occurring on the mass production and applied to the other forming methods will be prepared through rasping a property of TRIP material.

자동차 Panel의 Spring back에 대한 연구 (The spring back of Automobile body panel)

  • 최영환;유종근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.148-153
    • /
    • 2002
  • Spring back is the typical deformation of pressing process. This phenomenon much affects productivity and especially Incurs the unexpected result of assembling process. We have been searching for the various of the spring back to minimize spring back effect, because it is inevitable.

  • PDF

자동차용 강판의 소둔방법에 따른 성형성의 변화에 관한 연구 (A Study on the Formability of Autonobile Panel on the Heat Treatment Method)

  • 김순경;이승수;전언찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.629-632
    • /
    • 1995
  • The formability of an automobile body panel is very important. So, we performed an annealing condition change for the development of annealing condition with temperature, atmospheric gas and the annealing cycle. Formability was changed under the influenced of the mechanical properties of steel sheet for the automobile body panel. Therefore, ot os important in the BAF(Batch annealing furnace) annealing process. Because mechanical properties were decided on the heat treatment method of the coil. So, we tested the development of mechanical properties according to the heat treatment method at the annealing furnace using the Ax atmospheric gas and the HNx atmospheric gas. As a result of several investigations, we confirmed the following characteristics ; mechanical properties change under the influence of the annealing cycle and atmospheric gas.

  • PDF

TWB 판넬의 기계적특성 평가에 관한 연구 (A Study on the Evaluation of Mechanical Characteristics for Tailor Welded Blank Panel)

  • 천창환;한창석
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.183-190
    • /
    • 2010
  • There are many methods to reduce the weight and the cost of the automobile body, among them, Tailor Welded Blank (TWB) is new welding method applied to body structure. It is necessary to evaluate mechanical properties of TWB structures or sheets for the application to automobile body parts. In this study, the stiffness of T-type and L-type joint structures, composite of TWB panel, which simplified two portions of side structure in automobile body were investigated. Additionally, the fatigue properties of TWB panels were obtained. Two types of welding technologies, laser and mash seam welding, were used to join mild panels with different thickness. This results are compared with conventional structures. The results are as follows: 1) The stiffness of joint structures, composite of TWB panel, is approximately 17% higher than that of conventional ones. 2) The location of welding line in TWB had a effect on the in plane bending stiffness, but not on the out of plane bending stiffness. 3) In terms of welding technology type, the mash seam welding show higher stiffness than the laser welding for in plane bending stiffness. But minimal differences in both types are revealed for out of plane bending stiffness. 4) The fatigue strength, composite of TWB panel, is lower than that of base steel. It is thought that defects in the welding zone had the action of notch in the fatigue test.

SMOOTHING METHOD OF AUTO-BODY PART CONTOUR FOR THE DIE-FACE DESIGN SYSTEM BASED ON THE CAE PLATFORM

  • Gong, K.J.;Guo, W.;Hu, P.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.853-858
    • /
    • 2006
  • The method of die-face design based on the CAE platform for automobile panels can fast modify the die addendum. In contrast with the process of the die-face design based on the CAD platform, there are some special steps for the die-face design based on the CAE platform. The most obvious difference is that the auto-body part contour needs smoothing arlier than the design of addendum surfaces does. It is helpful to improve the design quality of addendum surface. In spite of extensive researches on the smoothing technique, here is still dearth of the published solutions about smoothing the part contour with additional surface. This paper attempts to analyze the difficulties and provides practical solutions. Main results include the algorithm to calculate the segments needing to be smoothed on boundary, the strategy to create the smoothing curve and the procedure of surface generation. The relevant function modules for parametric design are developed. A few examples and suggestions for future work conclude the paper.

자동차 차체제작용 레이저 용접 판재의 피로균열 전파 특성 (The Characteristic of Fatigue Crack Propagation of Laser Welded Sheet Metal for Automobile Body Panel)

  • 곽대순;권윤기;오택열;이경엽;강연식
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.181-189
    • /
    • 2001
  • For the Tailor Welded Blank sheet used fur automobile body panel, the characteristics of fatigue crack propagation behavior were studied. The thickness of specimen was machined to be same (0.9+0.9mm) and different (0.9+2.0mm). As a base test, mechanical properties around welding zone were examined. The results indicated that there were no significant decreases in mechanical properties, but hardness around welding bead is 2.3 times greater than base material. The crack propagation rate was noticeably decreased around welding line and rapidly increased as it passed by welding line. Reviewing the shape of the crack propagation, crack width around welding line was wide around the welding zone due to retardation of crack growth, but it became narrow passing welding line due to decreased toughness. Elasto-Plastic analysis was performed by finite element analysis fur explaining the test results.

  • PDF

경로의존성 없는 극좌표계 성형한계도를 이용한 판재 성형성 향상 기술 (The Improvement of Formability using the Polar-coordinate FLD with Strain Path Independence)

  • 배문기;홍승현;최광용;윤정환;김영석
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.348-353
    • /
    • 2015
  • The PEPS(Polar-coordinated Effective Plastic Strain) FLD(Forming Limit Diagram), a new type of FLD based on a polar representation of the EPS(Effective Plastic Strain), appears to be an effective solution to the problem of non-linear strain path effects. This method has the advantages of the familiar strain-based diagram for linear loading, but without the strain-hardening limitations of the stress-based diagram, or non-intuitive aspects of alternate Cartesian diagrams based on effective plastic strain. In the current study, the PEPS FLD was applied to the development process of an aluminum automobile-body panel, including the necking or crack prediction, die design, and die modification. As a result, the PEPS FLD provided improved formability of aluminum sheet as compared to deriving the potential formability with non-linearity.

자동차 외판용 BH강판에서 성형성과 소부경화성에 미치는 조질압연의 영향 (Effect of Temper Rolling on Formability and Baking Hardenability in Baking Hardenable Steels for Auto Body Outer Panel)

  • 고흥석;문만빈;신철수;오현운
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.37-44
    • /
    • 2004
  • Automotive company has been endeavoring to develop high strength steels to get higher fuel efficiency of car since the oil shortage in 1970s and to cope with the recent strict environmental regulation. Outer panels(Hood, Roof, Door and Fender) for automobile require higher dent resistance. Bake-hardenable(BH) steels are known as useful for their high deep drawability and high dent resistance. Recently BH steels are increasingly adapted for outer panel use due to their high drawability and high dent resistance. In this study effect of temper rolling on formability (textures, r value) and bake hardenability is investigated fur improving characteristic of bake-hardenable steels.

  • PDF

차체 제작을 위한 레이저용접 마그네슘 TWB 판넬 (MAGNESIUM TWB PANEL WITH LASER WELDING FOR AUTO BODY ASSEMBLY)

  • 이목영;장웅성;윤병현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1312-1316
    • /
    • 2007
  • Strip casted and rolled magnesium sheet is become exiting material for car manufacturer, due to its better formability and specific strength compare with conventional extruded sheet. TWB technology was attractive for car body designer, because it saves the weight of the car without strength loss. In this study, the laser welding performance of magnesium sheet was investigated for Mg TWB panel manufacturing. The material was strip casted and rolled magnesium alloy sheet contains 3 wt% Al and 1 wt% Zn (AZ31). Lamp pumped Nd:YAG laser of 2kW was used and its laser light was delivered by optical fiber of 0.6mm core diameter to material surface with focusing optics of 200mm focal length for TWB welding. The microstructure of weld bead was investigated to check internal defects such as inclusion, porosity and cracks. Also mechanical properties and formability were evaluated for press forming of car body. For the results, there was no crack but inclusion or porosity on weld at some conditions.The tensile strength of weld was over 95% of base metal. Inner and outer panel of engine hood were press formed and assembled at elevated temperature.

  • PDF

충돌 하중을 고려한 친환경 자연섬유 복합재 적용 자동차 차체 패널의 구조 설계 연구 (A Study on Structural Design of Natural Fiber Composites Automobile Body Panel Considering Impact Load)

  • 박길수;공창덕;박현범
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.291-296
    • /
    • 2015
  • 본 연구에서는 자동차 구조물의 경량화를 위해 자연섬유 복합재료를 적용하여 차량용 패널의 구조 설계 및 해석을 수행하였다. 구조 설계를 위해 Flax/vinyl ester 복합재료를 적용하였다. 섬유 복합재 패널의 제조공법은 VARTML(Vacuum Assisted Resin Transfer Molding-Light) 제조공법이 적용되었다. 구조 설계 후 충돌에 의한 구조물의 안전성을 분석하기 위해 충돌 실험을 수행하였다. 충돌 실험은 유럽 보행자 보호 기준에 맞게 수행하였으며 해석 결과를 검증하기 위하여 시편을 제작해 충격 실험을 수행하였다. 또한 충격 손상 후 구조물의 잔류강도를 측정하기 위해 손상을 가한 시편의 압축강도 실험을 수행하였다.