• Title/Summary/Keyword: Automatic welding robot

Search Result 40, Processing Time 0.021 seconds

Development of Special Robot Welding Nozzle for the Reduction of CO2 Gas Consumption (CO2 가스 절약형 로봇 용접용 노즐 개발에 관한 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.282-296
    • /
    • 2008
  • Present automobile robot welding use $CO_2$ inert gas as a shielding fluid. The inert gas is spreading out and consumable. This present welding mechanism interfered with the welding nozzle. After welding several places have welding defects. Therefore, to reduce the $CO_2$ inert gas and to avoid interference with the material and to increase production modified nozzle which composed of cap and tip are needed. Suggested modified nozzle assembly composed of two stages i.e. $1^{st}$ and $2^{nd}$ stage. At the second stage it has 8 holes which is 3mm of diameter around the circumference. On the base of experimental results the inert $CO_2$ gas discharge reduced to 47% and welding defects decreased also. Modified two stage welding cap can be applied to the present robot welding machine and save the prime cost.

Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface (선수미 흘수마크 용접을 위한 벽면이동로봇 개발)

  • Lee, Jae-Chang;Kim, Ho-Gu;Kim, Se-Hwan;Ryu, Sin-Wook
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

A Study on Construction of Automatic Inspection System for Welding Flaws (용접결함 검사 자동화 시스템 구축에 관한 연구)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.37-42
    • /
    • 2007
  • The purpose of this research is stability estimation of plant structure through classification and recognition about welding flaw in SWP(Spiral Welding Pipe). And, In this research, we used nondestructive test based on ultrasonic test as inspection method, and made up 2-axes inspection robot in order to control of ultrasonic probe on the SWP surface, and programmed to image processing and probabilistic neural network(PNN) classifying code by MATLAB programming. Through this process, we proved efficiency on the system of SWP stability Estimation.

A Case Study of the Design of Robot Welding Station in an Excavator Factory Using 3D Simulation (굴삭기공장에서 로봇을 이용한 용접공정의 3D 시뮬레이션 사례 연구)

  • Moon, Dug-Hee;Cho, Hyun-Il;Baek, Seung-Geun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.113-121
    • /
    • 2005
  • Virtual Manufacturing is a powerful methodology for developing a new product, new equipment and new production system. It enables us to check the errors in design before production. This paper deals with a case study of virtual manufacturing in an excavator factory. Boom and rotating table of upper body are selected for application. 3D models of parts and fixtures are developed with CATIA and 3D simulation models are developed with IGRIP. These models are used for the design of fixture to verify the motion of the equipment. As a result, the manual welding systems are replaced by automatic systems and many design errors are corrected in the design phase, which enables us to reduce the developing cost and time.

  • PDF

Study on the Simultaneous Control of the Seam Tracking and Leg Length in a Horizontal Fillet Welding Part 2: Seam Tracking

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • For the horizontal fillet welding with one plate in a vertical position, there will be a higher tendency of weld metal falling down rather than for the butt-welding in flat position. Such phenomenon could bring about the overlap or deflection of weld pool, and consequently induce the poor mechanical strength of weldments. Therefore, a precise position control of welding torch in conjunction with the weld qualify plays an important role in welding robot applications. In the present study, an experimental method was proposed for deriving a mathematical model between the leg length and the welding conditions. Finally, an algorithm was proposed for weld seam tracking and improvement of the weld quality. The reliability of the proposed algorithm was evaluated through various experiments, which showed that the proposed algorithm can be very effective for tracking the weld line and simultaneously achieving the sound weld bead.

  • PDF

Task oriented optimal trajectory control of robot-posioner system (작업에 따른 로보트-포지셔너 시스템의 최적 경로제어)

  • 전의식;오재응
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1057-1062
    • /
    • 1991
  • Recently, due to the development of new technology and products, FA has been accelerating for obtaining high-quality and saving of resources and power. Introduction of automation to the field which has bad working condition is needed and welding is one of these field. In this study, solving algorithm for down hand control which requires in the automatic are welding system is proposed. For the verification of the algorithm, numerical examples are shown and visualization is carried out using developed graphic tools.

  • PDF

A Study on Development of 3-D Simulator for H-Beam Robot Cutting and Optimization of Cutting Using the Simulator (H-beam 로봇 절단용 3차원 시뮬레이터의 개발과 이를 이용한 절단 최적화에 관한 연구)

  • Park, Ju-Yong;Kim, Yong-Uk
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.44-48
    • /
    • 2012
  • H-beam used for stiffening the upper structure of ocean plant is cut in the various shapes. The cutting process of the H-beam is done manually and requires a long time and high cost. Therefore, automation of H-beam cutting is an important task. This research aims to develop a 3-D simulator to build the automatic H-beam cutting system and to determine the optimal cutting method. The automatic H-beam cutting system composes of 6 robots including 2 cutting robots hang to a crane and 1 conveyer. The appropriate system layout for covering the various sizes and types of H-beam was tested and determined using the simulator. The H-beam cutting system uses a hybrid type of plasma and gas cutting because of special cutting shapes of H-beam. The cutting area of each cutting method should be properly divided according to the size and shape of H-beam to shorten the total cutting time. Additionally the collision between a robot and a robot or a robot and H-beam should be avoided. The optimal cutting method for the shortest cutting time without the collision could be found for the various cutting conditions by use of the simulator. 2 simulation samples shows the availability of the simulator to find the optimal cutting method.

A Study of Rotating Arc Sensor Using Fuzzy Controller for$CO_2$ Arc Welding ($CO_2$ 아크 용접에서 퍼지 제어기를 이용한 회전 아크센서에 관한 연구)

  • Choi Youngsoo;Park Hyunsung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.110-117
    • /
    • 2004
  • In automatic welding process using a robot, seam tracking is one of the important parts. Sensor for seam tracking is divided broadly into two categories as non contact sensor and contact sensor. The arc sensor is one of the non contact sensors, and it can be applied in weaving arc and rotating arc welding process. In such the arc sensors, rotating arc sensor can be applied to high speed welding over tens of Hz. The decrease of self regulation by high rotating speed causes to improve accuracy and response of sensor. In this study, fuzzy controller was used to track the seam for the $CO_2$ arc welding which had unstable arc. It could be shown that the rotating arc sensor was better than the weaving arc sensor.