• Title/Summary/Keyword: Automatic train control

Search Result 178, Processing Time 0.028 seconds

The selection of ATO profile on precision stop controller for urban railway (도시 철도의 정밀 정차 제어에 있어서의 ATO 프로파일의 선택)

  • 이태연;김용민;박준영;박재홍;한성호;박현준;안태기;온정근;백종현
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.251-258
    • /
    • 1999
  • This paper is mainly concerned with the development of the ATO(Automatic Train Operation) profile on precision stop controller. The ATO system is used for automatic or driverless operation of a train. In this paper, the algorithm for ATO controller is presented and three speed profiles on precision stop controller are compared. One profile is based on the maximum jerk control, another on the constant control input, and the third on the optimal control for the minimum energy consumption. These profiles are simulated and analyzed in view of the stop time, control input, jerk, propulsion and braking.

  • PDF

Investigation of Radio Communications-based Train Control System with Interoperability (무선통신기반 열차제어시스템 상호운영성 연구)

  • Choi, June-Young;Park, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • This paper analyzes the hazard related to train control, the functional requirements for atrain control system(TCS) and the automatic train protection(ATP) functional allocation that ensures the interoperability of a radio communications-based TCS. In addition, the interoperability can be obtained using wireless communications technology standards and standardized functional allocations of TCS performed on the wayside and onboard. Using this information, an integrated operating system for a rail network can be constructed. The functional allocations of TCS that support interoperability, require hazard analysis of TCS and definition of the system requirements. The hazard factors for a TCS are confirmed through setting the train safety space control and train speed limit excess. Furthermore, this paper determines the impact of the hazard factors on the TCS and, defines the functional requirements for the TCS subsystems and the ATP wayside and onboard functional allocations.

Analysis of EMI Between Overlapped Railway Signalling Systems and Its Countermeasure (철도신호시스템 중첩운영으로 인한 전자파장해현상 분석 및 대책)

  • Kho, Young-Hwan;Yoon, Sun-Ho;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1116-1122
    • /
    • 2009
  • ATS(Automatic Train Stop) system makes train stop when it runs over the speed limit and ensure the safe operation of train. Seoul Metro line 2 in Korea, which started its passenger service in 1982, has adopted ATS system for its signaling system. The ATS system has only a train stop function at the time of emergency, and Seoul Metro is planning to replaced them with ATC(Automatic Train Control)/ATO(Automatic Train Operation) system which can provide the dedicated speed control for headway reduction and automatic operation of train. Until all the ATS system is replaced with the new ATC system, both systems are to operate simultaneously at the same metro line. In this situation, ATS system sometimes reveals improper operation: train stops suddenly without any obstacles in front of it. These emergency stops cause interruption of passenger service, and abnormal abrasion of wheels and rail. This paper makes it clear that these interruptions are caused by EMI phenomena between ATS on-board device and ATC wayside device : Signal current flowing in AF track circuit of ATC is turn out to be a EMI source that prevent normal operation of the ATS on-board device. Although the two systems have different frequency-ranges (ATS system has frequency range between $78{\sim}130$[kHz] and ATC system has frequency range between $9.5{\sim}16.5$[kHz]), it turned out that EMI phenomena appears between the both systems. This is investigated by measuring the output signal from ATS on-board device passing over ATC wayside device. The FFT(Fast Fourier Transform) analysis of the signal reveals that AF track circuit signal is transmitted to the ATS on-board device and induce noise causing improper operation. The countermeasures to the EMI phenomena are examined in three ways; blocking EMI transmission, enforcement of EMS (Electromagnetic Susceptibility) of ATS on-board device, and blocking the EMI source. It is suggested that the practical solution be blocking EMI source temporarily, that is breaking AF track circuit signal when the trains with ATS on-board device pass over it. To this purpose, TODS(Train Occupation Detection System) is developed, and has made a success in preventing the EMI problem of Seoul Metro line 2.

Safety analysis to derive safety requirement in the railway system

  • Joung, Eui-Jin;Shin, Kyung-Ho;Kim, Yong-Gyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.383-386
    • /
    • 2006
  • The safety of the railway system is important because the system is a mass transit system and the results of the accident are inconceivable. The railway system is operated by train operation system such as train control system. So the train control system requires safety critical characteristics. In the European railway, ETCS (European Train Control System) project has been finished to accomplish the interoperability of each national railway signaling system. According to the interoperability degree, ETCS levels are suggested. As the highest level, ETCS level 3 suggests a radio communication. Also recently urban railway system is operated by driverless and automatic train control system. In this circumstance, more safety is required than before in the railway system. In order to accomplish the safety of a system, the requirements considering safety have to be suggested. The requirement is a set of several functions such as general function, environment, safety etc. For the safety critical system, safety function is more important than any other functions. The safety functions are deduced by safety analysis. In order to perform the safety analysis, the system hazards have to be identified and then risk analysis for each hazard should be performed. The risk is related to the frequency and the severity of each hazard. And then countermeasures for each risk have to be prepared. The summary of the countermeasures is about a kind of safety functions in a system. In this paper, the safety functions for a train control system are presented according to the above procedure.

  • PDF

PSD Door Response Time Improving Method in Train Manual Operation Mode (수동운전방식에서의 PSD 출입문 신호반응 시간 개선 방안 연구)

  • Lee, Moo-Ho;Kim, Chan-Cum;Lee, Suk-Jong;Lee, Soo-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.559-571
    • /
    • 2008
  • Platform Screen Door(PSD) has been installed and operated at seoul subway line $1\sim4$ in the manual train operation mode(ATS/ATC) by SeoulMetro since 2005. SeoulMetro uses the wireless (RF) communication system and the train door detection system for the link between the train and PSD doors opening/closing motion in the manual train operation mode. For the convenience and safety of passengers, the train doors and the PSD doors opening/closing shall be synchronized as much as possible. In ATO(Automatic Train Operation) mode which provides the interface between train control system and PSD system, ATO signaling system makes the train doors and PSD doors open/close command signals systematically, so PSD doors can be opened/closed almost simultaneously with the train doors. But, in the manual train control(ATS/ATC) mode, PSD system needs to detect the train doors open/close operation and make PSD open/close command signals to actuate PSD doors. These PSD open/close commanding process cause time delay of PSD doors opening/closing motion in response to the train doors opening/closing motion. Sometimes the response delay time can be over 1 second, which is not proper to operate PSD, and need to be reduced This paper presents the reduction method of the PSD response delay time to improve the convenience and safety of passengers.

  • PDF

A Study on Application of Arithmetic and Control Unit for High Safety (고안전성 연산제어 장치의 적용성 연구)

  • Shin, Seung-Kwon;Cho, Hyun-Jeong;Hwang, Jong-Kyu;Cho, Yong-Gee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.138-141
    • /
    • 2010
  • 본 논문에서는 고안전성 연산제어 장치의 열차제어시스템에 대한 적용성을 평가하여 그 결과를 분석하였다. 고안전성 연산제어 장치의 적용대상으로 열차제어시스템에서 가장 대표적인 지상 ATP 시스템을 선정하였다. 지상 ATP(Automatic Train Protection) 시스템은 다수의 차상 ATP 시스템과 통신하여 각 열차의 위치를 확인하고, 각 열차마다 안전 운행에 필요한 정보이동허가, 제한 속도 등의 열차정보를 전송하는 열차제어시스템의 하나이다. 적용대상 열차제어시스템(지상 ATP)의 고안전성 연산처리 장치의 평가항목으로 입력처리시간, 보팅 성공률, 보팅 용량, 최대 입력처리 개수를 정하였으며, DSV보드 LVDS 전송성능, DSV 메모리 공유 및 보팅성능, 최대 입력처리성능 및 보팅성공률을 시험하여 고안전성 연산처리장치의 적용성을 평가였다.

  • PDF

Estimation of Train Position Using Sensor Fusion Technique (센서융합에 의한 열차위치 추정방법)

  • Yoon Hee-Sang;Park Tae-Hyoung;Yoon Yong-Gi;Hwang Jong-Gyu;Lee Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • We propose a tram position estimation method for automatic train control system. The accurate train position should be continuously feedback to control system for safe and efficient operation of trains in railway. In this paper, we propose the sensor fusion method integrating a tachometer, a transponder, and a doppler sensor far estimation of train position. The external sensors(transponder, doppler sensor) are used to compensate for the error of internal sensor (tachometer). The Kalman filter is also applied to reduce the measurement error of the sensors. Simulation results are then presented to verify the usefulness of the proposed method.

Guideline for Preparation of Manuscript for Proceedings (신분당선 CBTC구간과 분당선 ATC구간의 절체운전에 대한 고찰)

  • Jang, Kwang-Dong;Cha, Ki-Ju;Kang, Deok-Won;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.2017-2022
    • /
    • 2009
  • Sinbundang Line(SBL) Train moves the transition zone where is located between Jeongja station and Migeum station switched over from Communication Based Train Control (CBTC) system area to Automatic Train Control (ATC) system area and viceversa. The SBL train to move the between SBL and Bundang Line is needed to install the Specific Transmission Module (STM) on SBL Line for interface with Bundang Line; STM receives from speed code from Bundang Line. So we suggested the method to ensure mutual compatibility and reliability for train operation on each other signaling system.

  • PDF

Estimation of Train Position Using Sensor Fusion Technique (센서융합에 의한 열차위치 추정방법)

  • Yoon H. S;Park T. H;Yoon Y. K;Hwang J. K.;Lee J. H.
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1205-1211
    • /
    • 2004
  • We propose a train position estimation method for automatic train control system. The accurate train position should be continuously feedback to control system for safe and efficient operation of trains in railway. In this paper, we propose the sensor fusion method integrating the tachometer, the transponder, and the doppler sensor for estimation of train position. The external sensors(transponder, doppler sensor) are used to compensate for the error of internal sensor(tachometer). The Kalman filter is also applied to reduce the measurement error of the sensors. Simulation results are then presented to verify the usefulness of the proposed method.

  • PDF

Study on the Speed Control Code Design for Fixed Block TCS (고정폐색 열차제어시스템 속도제어코드 설계에 관한 연구)

  • Lee, Kang-Mi;Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • Kyung-Bu High Speed Railway is operated in train control system(tcs) of fixed block operated in a way of dividing track circuits into several blocks in accordance with operation circumstances such as rolling stocks, grade, curves and facilities. The TCS of fixed block system refers to a continuous train control system, which transfers operational information such as entry and exit speed, distance-to-go, and deceleration etc. into on-board train control equipment on the basis of block occupancy of a preceding train. It guarantees a safe operation of trains by giving an emergency braking order, in case that a train exceeds an entry and exit speed of a corresponding block. In this paper, we analyze the speed control code deducing in accordance with maximum operation speed and characteristics of rolling stocks by analyzing principles of generation of speed control code allocated in blocks for safe operation, then train operational efficiency was analyzed by means of analysis of operation headway in accordance with the deduced speed control code. This study will be used to design in case of getting an increase in speed for existing high speed line or new high speed line TCS.