• Title/Summary/Keyword: Automatic system

Search Result 7,902, Processing Time 0.046 seconds

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.

A Study on the Determinants of Demand for Visiting Department Stores Using Big Data (POS) (빅데이터(POS)를 활용한 백화점 방문수요 결정요인에 관한 연구)

  • Shin, Seong Youn;Park, Jung A
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.55-71
    • /
    • 2022
  • Recently, the domestic department store industry is growing into a complex shopping cultural space, which is advanced and differentiated by changes in consumption patterns. In addition, competition is intensifying across 70 places operated by five large companies. This study investigates the determinants of the visits to department stores using the big data concept's automatic vehicle access system (pos) and proposes how to strengthen the competitiveness of the department store industry. We use a negative binomial regression test to predict the frequency of visits to 67 branches, except for three branches whose annual sales were incomplete due to the new opening in 2021. The results show that the demand for visiting department stores is positively associated with airport, terminal, and train stations, land areas, parking lots, VIP lounge numbers, luxury store ratio, F&B store numbers, non-commercial areas, and hotels. We suggest four strategies to enhance the competitiveness of domestic department stores. First, department store consumers have a high preference for luxury brands. Therefore, department stores need to form their own overseas buyer teams to discover and attract new luxury brands and attract customers who have a high demand for luxury brands. In addition, to attract consumers with high purchasing power and loyalty, it is necessary to provide more differentiated products and services for VIP customers than before. Second, it is desirable to focus on transportation hub areas such as train stations, airports, and terminals in Gyeonggi and Incheon. Third, department stores should attract tenants who can satisfy customers, given that key tenants are an important component of advanced shopping centers for department stores. Finally, the department store, a top-end shopping center, should be developed as a space with differentiated shopping, culture, dining out, and leisure services, such as "The Hyundai", which opened in 2021, to ensure future growth potential.

Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation (목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석)

  • Lee, Gi Ha;Yeon, Min Ho;Kim, Young Hun;Jung, Sung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various objective functions, the reproducibility of the hydrograph according to the objective functions was evaluated, and appropriate objective functions were proposed. As the rainfall-runoff model, the storage function model(SFM), which is a lumped hydrologic model used for runoff simulation in the current Korean flood forecasting system, was selected. In order to evaluate the reproducibility of the hydrograph for each objective function, 9 rainfall events were selected for the Cheoncheon basin, which is the upstream basin of Yongdam Dam, and widely-used 7 objective functions were selected for parameter estimation of the SFM for each rainfall event. Then, the reproducibility of the simulated hydrograph using the optimal parameter sets based on the different objective functions was analyzed. As a result, RMSE, NSE, and RSR, which include the error square term in the objective function, showed the highest accuracy for all rainfall events except for Event 7. In addition, in the case of PBIAS and VE, which include an error term compared to the observed flow, it also showed relatively stable reproducibility of the hydrograph. However, in the case of MIA, which adjusts parameters sensitive to high flow and low flow simultaneously, the hydrograph reproducibility performance was found to be very low.

A Study on the Wind Ventilation Forest Planning Techniques for Improving the Urban Environment - A Case Study of Daejeon Metropolitan City - (도시환경 개선을 위한 바람길숲 조성 계획기법 개발 연구 - 대전광역시를 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Park, Soo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.28-41
    • /
    • 2023
  • The objective of the study was to develop an Urban Windway Forest Creation Planning Technique for the Improvement of the Urban Environment using the case of Daejeon Metropolitan City. Through a spatial analysis of fine dust and heat waves, a basin zone, in which the concentration was relatively serious, was derived, and an area with the potential of cold air flow was selected as the target area for the windway forest development by analyzing the climate and winds in the relevant zone. Extreme fine dust areas included the areas of the Daejeon Industrial Complex Regeneration Business District in Daedeok-gu and Daedeok Techno Valley in Yuseong-gu. Heat wave areas included the areas of Daedeok industrial Complex in Moksang-dong, the Daejeon Industrial Complex Regeneration Business District in Daehwa-dong, and the high-density residential area in Ojeong-dong. As a result of measuring the wind speeds in Daejeon with an Automatic Weather System, the average wind speeds during the day and night were 0.1 to 1.7 m/s,, respectively. So, a plan of for a windway forest that smoothly induces the movement of cold air formed in outer forests at night is required. The fine dust/heat wave intensive management zones of Daejeon Metropolitan City were Daejeoncheon, Yudeungcheon, Gapcheon-Yudeungcheon, and Gapcheon. The windway forest formation plan case involved the old city center of Daejeon Metropolitan City among the four zones, the Gapcheon-Yudeungcheon area, in which the windway formation effect was presumed to be high. The Gapcheon-Yudeungcheon area is a downtown area that benefits from the cold and fresh air generated on Mt. Gyejok and Mt. Wuseong, which are outer forests. Accordingly, the windway forest was planned to spread the cold air to the city center by connecting the cold air generated in the Seosa-myeon forest of Mt. Gyejok and the Namsa-myeon forest of Mt. Wuseong through Gapcheon, Yudeungcheon, and street forests. After selecting the target area for the wind ventilation forest, a climate map and wind formation function evaluation map were prepared for the area, the status of variation wind profiles (night), the status of fine dust generation, and the surface temperature distribution status were grasped in detail. The wind ventilation forest planning concept and detailed target sites by type were identified through this. In addition, a detailed action plan was established according to the direction of creation and setting of the direction of creation for each type of wind ventilation forest.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF

A Study on the Location of Retail Trade in Kwangju-si and Its Inhabitants와 Effcient Utilization (광주시 소매업의 입지와 주민의 효율적 이용에 관한 연구)

  • ;Jeon, Kyung-sook
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.1
    • /
    • pp.68-92
    • /
    • 1995
  • Recentry the structure of the retail trade have been chanaed with its environmantal changes. Some studies may be necessary on the changing process of environment and fundamental structure analyses of the retail trade. This study analyzes the location of retail trades, inhabitants' behavior in retail tredes and their desirable utilization scheme of them in Kwangju-si. Some study methods, contents and coming-out results are as follows: 1. Retail trades can be classified into independent stores, chain-stores (supermarket, voluntary chain and frenchiise system and convenience store), department stores, cooperative associations, traditional, markets mail-order marketing, automatic vending and others by service levels, selling-items, prices, managements, methods of retailing and store or nonstore type. 2. In Kwangju, the environment of retail trades is related to the consumers of population structure: chanes in consumers pattern, trends toward agings and nuclear family, increase of leisur: time and female advances to society. Rapid structural shift in retail trade has also been occurred due to these social changes. Traditionl and premodern markets until 1970s altere to supermarkets or department stores in 1980s, and various types, large enterprises and foreign capitals came into being in 1990s. 3. The locational characteristics of retail trades are resulted from the spatial analysis of the total population distribution, and from the calculation of segregation index in the light of potential demand. The densely-populated areas occurs in newly-built apartment housing complex which is distributed with a ring-shaped pattern around the old urban core. The numbers and rates of the aged over sixty in Kwangsan-gu and the circumference area of Mt.Moodeung, are larger and higher where rural elements are remarkable. A relation between population distribution and retail trade are analysed by the index of population per shop. The index of the population number per shop is lower in urban center, as a whole, being more convenient for consumers. In newly-formed apartment complex areas, on the other, the index more than 1,000 per shop, meeting not the demands for consumers. Because both the younger and the aged are numerous in these areas, the retail trade pattern pertinent to both are needed. Urban fringes including Kwangsan-gu and the vicinity of Mt.Moodeung have some problems owing to the most of population number per shop (more than 1, 500) and the most extensive as well. 4. The regional characteristic of retail trade is analyzed through the location quotient of shops by locational patterns and centerality index. Chungkum-dong is the highest-order central place in CBD. It is the core of retail trades, which has higher-ordered specialty store including three big department stores, supermarkets and large stores. Taegum-dong, Chungsu-dong, Taeui-dong, and Numun-dong that are neiahbored to Chungkum-dong fall on the second group. They have a central commercial section where large chain stores, specialty shopping streets, narrow-line retailing shops (furniture, amusement service, and gallary), supermarkets and daily markets are located. The third group is formed on the axis of state roads linking to Naju-kun, Changseong-kun, Tamyang-kun, Hwasun-kun and forme-Songjeong-eup. It is related to newly, rising apartment housing complex along a trunk road, and characterized by markets and specialty stores. The fourth group has neibourhood-shopping centers including older residential area and Songjeong-eup area with independent stores and supermarkets as main retailing functions. The last group contains inner residential area and outer part of a city including Songjeong-eup. Outer part of miscellaneous shops being occasionally found is rural rather than urban (Fig. 7). 5. The residents' behaviors using retail trade are analyzed by factors of goods and facilities. Department stores are very high level in preference for higher-order shopping-goods such as clothes for full dress in view of both diversity and quality of goods(28.9%). But they have severe traffic congestions, and high competitions for market ranges caused by their sma . 64.0% of respondents make combined purpose trips together with banking and shopping. 6. For more efficiency of retail-trading, it is necessary to induce spatial distribution policy with regard to opportunity frequency of goods selection by central place, frontier regions and age groups. Also we must consider to analyze competition among different types of retail trade and analyze the consumption behaviors of working females and younger-aged groups, in aspects of time and space. Service improvement and the rationalization of management should be accomplished in such as cooperative location (situation) must be under consideration in relations to other functions such as finance, leisure & sports, and culture centers. Various service systems such as installment, credit card and peremium ticket, new used by enterprises, must also be carried service improvement. The rationalization and professionalization in for the commercial goods are bsically requested.

  • PDF

Analysis of Patient Effective Dose in PET/CT; Using CT Dosimetry Programs (CT 선량 측정 프로그램을 이용한 PET/CT 검사 환자의 예측 유효 선량의 분석)

  • Kim, Jung-Sun;Jung, Woo-Young;Park, Seung-Yong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 2010
  • Purpose: As PET/CT come into wide use, it caused increasing of expose in clinical use. Therefore, Korea Food and Drug Administration issued Patient DRL (Diagnostic Reference Level) in CT scan. In this study, to build the basis of patient dose reduction, we analyzed effective dose in transmission scan with CT scan. Materials and Methods: From February, 2010 to March 180 patients (age: $55{\pm}16$, weight: $61.0{\pm}10.4$ kg) who examined $^{18}F$-FDG PET/CT in Asan Medical Center. Biograph Truepoint 40 (SIEMENS, GERMANY), Biograph Sensation 16 (SIEMENS, GERMANY) and Discovery STe8 (GE healthcare, USA) were used in this study. Per each male and female average of 30 patients doses were analyzed by one. Automatic exposure control system for controlling the dose can affect the largest by a patient's body weight less than 50 kg, 50-60 kg less, 60 kg more than the average of the three groups were divided doses. We compared that measured value of CT-expo v1.7 and ImPACT v1.0. The relationship between body weight and the effective dose were analyzed. Results: When using CT-Expo V1.7, effective dose with BIO40, BIO16 and DSTe8 respectably were $6.46{\pm}1.18$ mSv, $9.36{\pm}1.96 $mSv and $9.36{\pm}1.96$ mSv for 30 male patients respectably $6.29{\pm}0.97$ mSv, $10.02{\pm}2.42$ mSv and $9.05{\pm}2.27$ mSv for 30 female patients respectably. When using ImPACT v1.0, effective dose with BIO40, BIO16 and DSTe8 respectably were $6.54{\pm}1.21$ mSv, $8.36{\pm}1.69$ mSv and $9.74{\pm}2.55$Sv for 30 male patients respectably $5.87{\pm}1.09$ mSv, $8.43{\pm}1.89$ mSv and $9.19{\pm}2.29$ mSv for female patients respectably. When divided three groups which were under 50 kg, 50~60 kg and over 60 kg respectably were 6.27 mSv, 7.67 mSv and 9.33 mSv respectably using CT-Expo V1.7, 5.62 mSv, 7.22 mSv and 8.91 mSv respectably using ImPACT v1.0. Weight and the effective dose coefficient analysis showed a very strong positive correlation(r=743, r=0.693). Conclusion: Using such a dose evaluation programs, easier to predict and evaluate the effective dose possible without performing phantom study and such dose evaluation programs could be used to collect basic data for CT dose management.

  • PDF

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.