• Title/Summary/Keyword: Automatic segmentation

Search Result 510, Processing Time 0.029 seconds

Automatic Cell Classification and Segmentation based on Bayesian Networks and Rule-based Merging Algorithm (베이지안 네트워크와 규칙기반 병합 알고리즘을 이용한 자동 세포 분류 및 분할)

  • Jeong, Mi-Ra;Ko, Byoun-gChul;Nam, Jae-Yeal
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.141-144
    • /
    • 2008
  • 본 논문에서는 세포영상을 분할하고 분류하는 알고리즘을 제안한다. 우선, 배경으로부터 세포를 분할한 후, 학습데이터로부터 얻은 Compactness, Smoothness, Moments와 같은 형태학적 특징을 추출한다. 전경세포들이 분할된 후에, 보다 정밀한 세포분석을 위해서 군집세포(Overlapped Cell)와 독립세포(Isolated Cell)를 분류 할 수 있는 알고리즘의 개발이 필수적이다. 이를 위해서 본 논문에서는 베이지안 네트워크와 각 노드에 대한 3개의 확률밀도함수를 사용하여 각 세포 영역을 분류한다. 분류된 군집세포영역은 향후 정확한 세포 분석을 위해서 군집세포가 포함하는 독립세포의 수만큼 마커를 찾고, Watershed 알고리즘과 병합과정을 거쳐 하나의 독립세포를 분리하게 된다. 현미경으로부터 얻은 세포영상에 대한 실험 결과는 이전 논문들에서 제안한 방법들과 비교했을 때, 각 군집세포의 독립세포로의 분리 이전에 세포영역에 대한 분류과정을 먼저 수행하였기 때문에 분할 성능이 크게 향상되었음을 확인할 수 있다.

Manchu Script Letters Dataset Creation and Labeling

  • Aaron Daniel Snowberger;Choong Ho Lee
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.80-87
    • /
    • 2024
  • The Manchu language holds historical significance, but a complete dataset of Manchu script letters for training optical character recognition machine-learning models is currently unavailable. Therefore, this paper describes the process of creating a robust dataset of extracted Manchu script letters. Rather than performing automatic letter segmentation based on whitespace or the thickness of the central word stem, an image of the Manchu script was manually inspected, and one copy of the desired letter was selected as a region of interest. This selected region of interest was used as a template to match all other occurrences of the same letter within the Manchu script image. Although the dataset in this study contained only 4,000 images of five Manchu script letters, these letters were collected from twenty-eight writing styles. A full dataset of Manchu letters is expected to be obtained through this process. The collected dataset was normalized and trained using a simple convolutional neural network to verify its effectiveness.

THE ELEVATION OF EFFICACY IDENTIFYING PITUITARY TISSUE ABNORMALITIES WITHIN BRAIN IMAGES BY EMPLOYING MEMORY CONTRAST LEARNING TECHNIQUES

  • S. SINDHU;N. VIJAYALAKSHMI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.931-943
    • /
    • 2024
  • Accurately identifying brain tumors is crucial for medical imaging's precise diagnosis and treatment planning. This study presents a novel approach that uses cutting-edge image processing techniques to automatically segment brain tumors. with the use of the Pyramid Network algorithm. This technique accurately and robustly delineates tumor borders in MRI images. Our strategy incorporates special algorithms that efficiently address problems such as tumor heterogeneity and size and shape fluctuations. An assessment using the RESECT Dataset confirms the validity and reliability of the method and yields promising results in terms of accuracy and computing efficiency. This method has a great deal of promise to help physicians accurately identify tumors and assess the efficacy of treatments, which could lead to higher standards of care in the field of neuro-oncology.

Studies of Automatic Dental Cavity Detection System as an Auxiliary Tool for Diagnosis of Dental Caries in Digital X-ray Image (디지털 X-선 영상을 통한 치아우식증 진단 보조 시스템으로써 치아 와동 자동 검출 프로그램 연구)

  • Huh, Jangyong;Nam, Haewon;Kim, Juhae;Park, Jiman;Shin, Sukyoung;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • The automated dental cavity detection program for a new concept intra-oral dental x-ray imaging device, an auxiliary diagnosis system, which is able to assist a dentist to identify dental caries in an early stage and to make an accurate diagnosis, was to be developed. The primary theory of the automatic dental cavity detection program is divided into two algorithms; one is an image segmentation skill to discriminate between a dental cavity and a normal tooth and the other is a computational method to analyze feature of an tooth image and take an advantage of it for detection of dental cavities. In the present study, it is, first, evaluated how accurately the DRLSE (Direct Regularized Level Set Evolution) method extracts demarcation surrounding the dental cavity. In order to evaluate the ability of the developed algorithm to automatically detect dental cavities, 7 tooth phantoms from incisor to molar were fabricated which contained a various form of cavities. Then, dental cavities in the tooth phantom images were analyzed with the developed algorithm. Except for two cavities whose contours were identified partially, the contours of 12 cavities were correctly discriminated by the automated dental caries detection program, which, consequently, proved the practical feasibility of the automatic dental lesion detection algorithm. However, an efficient and enhanced algorithm is required for its application to the actual dental diagnosis since shapes or conditions of the dental caries are different between individuals and complicated. In the future, the automatic dental cavity detection system will be improved adding pattern recognition or machine learning based algorithm which can deal with information of tooth status.

An Automatic Mobile Cell Counting System for the Analysis of Biological Image (생물학적 영상 분석을 위한 자동 모바일 셀 계수 시스템)

  • Seo, Jaejoon;Chun, Junchul;Lee, Jin-Sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • This paper presents an automatic method to detect and count the cells from microorganism images based on mobile environments. Cell counting is an important process in the field of biological and pathological image analysis. In the past, cell counting is done manually, which is known as tedious and time consuming process. Moreover, the manual cell counting can lead inconsistent and imprecise results. Therefore, it is necessary to make an automatic method to detect and count cells from biological images to obtain accurate and consistent results. The proposed multi-step cell counting method automatically segments the cells from the image of cultivated microorganism and labels the cells by utilizing topological analysis of the segmented cells. To improve the accuracy of the cell counting, we adopt watershed algorithm in separating agglomerated cells from each other and morphological operation in enhancing the individual cell object from the image. The system is developed by considering the availability in mobile environments. Therefore, the cell images can be obtained by a mobile phone and the processed statistical data of microorganism can be delivered by mobile devices in ubiquitous smart space. From the experiments, by comparing the results between manual and the proposed automatic cell counting we can prove the efficiency of the developed system.

An Automatic Segmentation Method for Video Object Plane Generation (비디오 객체 생성을 위한 자동 영상 분할 방법)

  • 최재각;김문철;이명호;안치득;김성대
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.146-155
    • /
    • 1997
  • The new video coding standard Iv1PEG-4 is enabling content-based functionalities. It requires a prior decomposition of sequences into video object planes (VOP's) so that each VOP represents moving objets. This paper addresses an image segmentation method for separating moving objects from still background (non-moving area) in video sequences using a statistical hypothesis test. In the proposed method. three consecutive image frames are exploited and a hypothesis testing is performed by comparing two means from two consecutive difference images. which results in a T-test. This hypothesis test yields a change detection mask that indicates moving areas (foreground) and non-moving areas (background), Moreover. an effective method for extracting

  • PDF

Automatic Segmentation of Product Bottle Label Based on GrabCut Algorithm

  • Na, In Seop;Chen, Yan Juan;Kim, Soo Hyung
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a method to build an accurate initial trimap for the GrabCut algorithm without the need for human interaction. First, we identify a rough candidate for the label region of a bottle by applying a saliency map to find a salient area from the image. Then, the Hough Transformation method is used to detect the left and right borders of the label region, and the k-means algorithm is used to localize the upper and lower borders of the label of the bottle. These four borders are used to build an initial trimap for the GrabCut method. Finally, GrabCut segments accurate regions for the label. The experimental results for 130 wine bottle images demonstrated that the saliency map extracted a rough label region with an accuracy of 97.69% while also removing the complex background. The Hough transform and projection method accurately drew the outline of the label from the saliency area, and then the outline was used to build an initial trimap for GrabCut. Finally, the GrabCut algorithm successfully segmented the bottle label with an average accuracy of 92.31%. Therefore, we believe that our method is suitable for product label recognition systems that automatically segment product labels. Although our method achieved encouraging results, it has some limitations in that unreliable results are produced under conditions with varying illumination and reflections. Therefore, we are in the process of developing preprocessing algorithms to improve the proposed method to take into account variations in illumination and reflections.

A Study on Segmentation and Priority of Tactical Considerations (METT+TC) (전술적 고려요소 (METT+TC)의 세분화 및 우선순위 결정에 관한 연구)

  • Han, Seung-Jo;Park, Joon-Hyoung
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.173-181
    • /
    • 2016
  • The objective of this study is to subdivide the tactical considerations (METT+TC; Mission, Enemy, Terrain & Weather, Troops available, Time available, Civil considerations) through Delphi method and prioritize those via AHP (Analytic Hierarchy Process). Though it has been taken for granted that the tactical considerations were inevitable for decision making relating to military operations, their segmentation and priority have not been studied sufficiently in military. The data for Delphi method and AHP were based on interview with military experts and questionnaires answered by those. Six tactical considerations were segmented into 34 sub-considerations by Delphi, and Six tactical considerations and 34 sub-ones were prioritized through AHP in attack and defense aspects. If the research results will be embedded into database of automatic command and control system (e.g. ACTIS; Army Tactical Command Information System), effective decision-making process will get easier and faster.

Postal Envelope Image Recognition System for Postal Automation (서장 우편물 자동처리를 위한 우편영상 인식 시스템)

  • Kim, Ho-Yon;Lim, Kil-Taek;Kim, Doo-Sik;Nam, Yun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.429-442
    • /
    • 2003
  • In this paper, we describe an address image recognition system for automatic processing of standard- size letter mail. The inputs to the system are gray-level mail piece images and the outputs are delivery point codes with which a delivery sequence of carrier can be generated. The system includes five main modules; destination address block location, text line separation, character segmentation, character recognition and finally address interpretation. The destination address block is extracted on the basis of experimental knowledge and the line separation and character segmentation is done through the analysis of connected components and vortical runs. For recognizing characters, we developed MLP-based recognizers and dynamical programming technique for interpretation. Since each module has been implemented in an independent way, the system has a benefit that the optimization of each module is relatively easy. We have done the experiment with live mail piece images directly sampled from mail sorting machine in Yuseong post office. The experimental results prove the feasibility of our system.

Automatic Segmentation of Lung, Airway and Pulmonary Vessels using Morphology Information and Advanced Rolling Ball Algorithm (형태학 정보와 개선된 롤링 볼 알고리즘을 이용한 폐, 기관지 및 폐혈관 자동 분할)

  • Cho, Joon-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • In this paper, the algorithm that can automatically segment the lung, the airway and the pulmonary vessels in a chest CT was proposed. The proposed method is progressed in three steps. In the first step, the lung and the airway are segmented by the region growing law through the optimal threshold and three-dimensional labeling. In the second, from the start point to the first carina of the airway is segmented by the deduction operation, and the next airway of the bifurcations are segmented by applying a variable threshold technique. In the third step, the left/right lungs are divided by the restoration process for the lung, and the outside of lungs for abnormal is checked by applying the advanced rolling ball algorithm, and if abnormal is found, that part is removed, and it is restored to the normal lungs by connecting the outside of the lung in the form of second-order polynomial. Finally, pulmonary vessels are segmented by applying the three-dimensional connected component labeling method and three-dimensional region growing method. As the results of simulation, it could be confirmed that the pulmonary vascular is accurately divided without loss of tissue around lung.