• Title/Summary/Keyword: Automatic model selection

Search Result 103, Processing Time 0.024 seconds

The Comparative Study for the Property of Learning Effect based on Delay ed Software S-Shaped Reliability Model (지연된 소프트웨어 S-형태 신뢰성모형에 의존된 학습효과 특성에 관한 비교 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.11 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • In this study, software products developed in the course of testing, software managers in the process of testing software and tools for effective learning effects perspective has been studied using the NHPP software. The delayed software S-shaped reliability model applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$(coefficient of determination).

The Study of Software Reliability Model from the Perspective of Learning Effects for Burr Distribution (Burr분포 학습 효과 특성을 적용한 소프트웨어 신뢰도 모형에 관한 연구)

  • Kim, Dae-Soung;Kim, Hee-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4543-4549
    • /
    • 2011
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The Burr distribution applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$.

The Comparative Study for Property of Learning Effect based on Software Reliability Model using Doubly Bounded Power Law Distribution (이중 결합 파우어 분포 특성을 이용한 유한고장 NHPP모형에 근거한 소프트웨어 학습효과 비교 연구)

  • Kim, Hee Cheul;Kim, Kyung-Soo
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The doubly bounded power law distribution model makeup Weibull distribution applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$.

The Study of NHPP Software Reliability Model from the Perspective of Learning Effects (학습 효과 기법을 이용한 NHPP 소프트웨어 신뢰도 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The Weibull distribution applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R_{sq}$.

A High-Resolution Image Reconstruction Method Utilizing Automatic Input Image Selection from Low-Resolution Video (저해상도 동영상에서의 자동화된 입력영상 선별을 이용한 고해상도 영상 복원 방법)

  • Kim Sung-Deuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.12-18
    • /
    • 2006
  • This paper presents a method to extract a good high-resolution image from a low-resolution video in an automatic manner. Since a high-resolution image reconstruction method utilizing several low-resolution input images works better than a conventional interpolation method utilizing single low-resolution input image only if the input images are well registered onto a common high-resolution grid, low-resolution input images should be carefully chosen so that the registration errors can be carefully considered. In this paper, the statistics obtained from the motion-compensated low-resolution images are utilized to evaluate the feasibility of the input image candidates. Maximum motion-compensation error is estimated from the high-resolution image observation model. U the motion-compensation error of the input image candidate is greater than the estimated maximum motion-compensation error, the input image candidate is discarded. The number of good input image candidates and the statistics of the motion-compensation errors are used to choose final input images. The final input images chosen from the input image selection block are given to the following high-resolution image reconstruction block. It is expected that the proposed method is utilized to extract a good high-resolution image efficiently from a low-resolution video without any user intervention.

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

Extraction of User Preference for Video Stimuli Using EEG-Based User Responses

  • Moon, Jinyoung;Kim, Youngrae;Lee, Hyungjik;Bae, Changseok;Yoon, Wan Chul
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1105-1114
    • /
    • 2013
  • Owing to the large number of video programs available, a method for accessing preferred videos efficiently through personalized video summaries and clips is needed. The automatic recognition of user states when viewing a video is essential for extracting meaningful video segments. Although there have been many studies on emotion recognition using various user responses, electroencephalogram (EEG)-based research on preference recognition of videos is at its very early stages. This paper proposes classification models based on linear and nonlinear classifiers using EEG features of band power (BP) values and asymmetry scores for four preference classes. As a result, the quadratic-discriminant-analysis-based model using BP features achieves a classification accuracy of 97.39% (${\pm}0.73%$), and the models based on the other nonlinear classifiers using the BP features achieve an accuracy of over 96%, which is superior to that of previous work only for binary preference classification. The result proves that the proposed approach is sufficient for employment in personalized video segmentation with high accuracy and classification power.

Model Study of Aesthetic Database System of Architectural Precedents for Design Reference (설계참조를 위한 건축선례의 미학적 정보체계 모형연구)

  • Kim, Kyong-Soo
    • Journal of architectural history
    • /
    • v.5 no.2 s.10
    • /
    • pp.83-95
    • /
    • 1996
  • Computerized visual database construction of architectural precedents has just begun in some research institutes in the world. In Korea the first visual database has shown its testl version by S architectural design firm in september 1996. In this article the author discusses the historical contexts and the recent computerization cases, the traits, the uses and the limits of architectural visual database system of precedents. The forms and contents of data fields in two cases are compared with a focus on the description of architectural traits of each data entry. Compared to the KIA format, the S database has better performance for architectural design reference because it collects more pictures and drawings and larger texts for the field of architectural chracteristics. But this latter also is constrained by its capacity of memory and so lacks the reciprocity of the DOORS in the Graduate School of Design, Harvard University. A visual database system which has more flexible allocation of memory and respondent with the users is yet to be prepared. But this system also should be maintained by some experts in architectural history, theory and criticism, because their knowledge is essential for selection of precedents and revision of the data description. A full-fledged electronic visual database in architecture will not only save much effort for the architect, but also will change the architects' design behavior. Nevertheless this does not mean the automatic promotion of architects' creativity.

  • PDF

An Expert System for Short-Term Generation Scheduling of Electric Power Systems (전력계통의 단기 발전계획 기원용 전문가시스템)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.831-840
    • /
    • 1992
  • This paper presents an efficient short-term generation scheduling method using a rule-based expert/consulting system approach to assist electric energy system operators and planners. The expert system approach is applied to improve the Dynamic Programming(DP) based generation scheduling algorithm. In the selection procedure of the feasible combinations of generating units at each stage, automatic consulting on the manipulation of several constraints such as the minimum up time, the minimum down time and the maximum running time constraints of generating units will be performed by the expert/consulting system. In order to maximize the solution feasibility, the aforementioned constraints are controlled by a rule-based expert system, that is, instead of imposing penalty cost to those constraint violated combinations, which sometimes may become the very reason of no existing solution, several constraints will be manipulated within their flexibilities using the rules and facts that are established by domain experts. In this paper, for the purpose of implementing the consulting of several constraints during the dynamic process of generation scheduling, an expert system named STGSCS is developed. As a building tool of the expert system, C Language Integrated Production System(CLIPS) is used. The effectiveness of the proposed algorithm has been demonstrated by applying it to a model electric energy system.

  • PDF

A New Dynamic Auction Mechanism in the Supply Chain: N-Bilateral Optimized Combinatorial Auction (N-BOCA) (공급사슬에서의 새로운 동적 경매 메커니즘: 다자간 최적화 조합경매 모형)

  • Choi Jin-Ho;Chang Yong-Sik;Han In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.139-161
    • /
    • 2006
  • In this paper, we introduce a new combinatorial auction mechanism - N-Bilateral Optimized Combinatorial Auction (N-BOCA). N-BOCA is a flexible iterative combinatorial auction model that offers optimized trading for multi-suppliers and multi-purchasers in the supply chain. We design the N-BOCA system from the perspectives of architecture, protocol, and trading strategy. Under the given N-BOCA architecture and protocol, auctioneers and bidders have diverse decision strategies f3r winner determination. This needs flexible modeling environments. Hence, we propose an optimization modeling agent for bid and auctioneer selection. The agent has the capability to automatic model formulation for Integer Programming modeling. Finally, we show the viability of N-BOCA through prototype and experiments. The results say both higher allocation efficiency and effectiveness compared with 1-to-N general combinatorial auction mechanisms.

  • PDF