• Title/Summary/Keyword: Automatic measurement

Search Result 1,013, Processing Time 0.035 seconds

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

A Suvey on Satisfaction Measurement of Automatic Milking System in Domestic Dairy Farm (자동착유시스템 설치농가의 설치 후 만족도에 관한 실태조사)

  • Ki, Kwang-Seok;Kim, Jong-Hyeong;Jeong, Young-Hun;Kim, Yun-Ho;Park, Sung-Jai;Kim, Sang-Bum;Lee, Wang-Shik;Lee, Hyun-June;Cho, Won-Mo;Baek, Kwang-Soo;Kim, Hyeon-Shup;Kwon, Eung-Gi;Kim, Wan-Young;Jeo, Joon-Mo
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The present survey was conducted to provide basic information on automatic milking system (AMS) in relation to purchase motive, milk yield and quality, customer satisfaction, difficulties of operation and customer suggestions, etc. Purchase motives of AMS were insufficient labor (44%), planning of dairy experience farm (25%), better performance of high yield cows (19%) and others (6%), respectively. Average cow performance after using AMS was 30.9l/d for milk yield, 3.9% for milk fat, 9,100/ml for bacterial counts. Sixty-eight percentage of respondents were very positive in response to AMS use for their successors but 18% were negative. The AMS operators were owner (44%), successor (44%), wife (6%) and company worker (6%), respectively. The most difficulty (31%) in using AMS was operating the system and complicated program manual. The rate of response to system error and breakdown was 25%. The reasons for culling cow after using AMS were mastitis (28%), reproduction failure (19%), incorrect teat placement (12%), metabolic disease (7%) and others (14%), respectively. Fifty-six percentages of the respondents made AMS maintenance contract and 44% did not. Average annual cost of the maintenance contract was 6,580,000 won. Average score for AMS satisfaction measurement (1 to 5 range) was 3.2 with decrease of labor cost 3.7, company A/S 3.6, increase of milk yield 3.2 and decrease of somatic cell count 2.8, respectively. Suggestions for the higher efficiency in using AMS were selecting cows with correct udder shape and teat placement, proper environment, capital and land, and attitude for continuous observation. Systematic consulting was highly required for AMS companies followed by low cost for AMS setup and systematization of A/S.

A Comparative Study on Productivity Analysis of Automated Pavement Crack Sealing Machines (도로면 크랙실링 자동화 장비의 작업 생산성 분석에 관한 비교 연구)

  • Seo, Won-Jung;Yoo, Hyun-Seok;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1289-1298
    • /
    • 2014
  • Pavement crack sealing method, which is one of the methods to maintain and repair the road, prevents the extending of cracks by repairing cracks in its early occurrence and has already been applied to many roadworks in advanced foreign country for a long time. But in the conventional crack sealing method, traffic accidents occur frequently during the repair because it's commonly performed on the heavy traffic road or highway. It also has some difficulties in securing the safety of workers from the risk of burns caused by heated sealant. In an effort to solve these problems, automated pavement crack sealing machines such as ARMM, OCCSM, TTLS have been developed in advanced foreign country since early 1990s. Also APCS in 2004 and ACSTM in 2013 were already developed domestically. However, since these automated crack sealers developed from a number of research institutions have different test-bed conditions and productivity measurement models, it's difficult to compare and evaluate them objectively. In this study, the image processing time of the respective machines and the movement time of each motion on the work process were estimated by using fully autonomous mapping and semi-automatic mapping in order to measure the productivity in the same environmental conditions. In addition, the productivity measurement test-bed reflected domestic road characteristics was designed to estimate and compare the productivity of the automated crack sealing machines.

Comparative Analysis of Wind Flows in Wind Corridor Based on Spatial and Geomorphological Characteristics to Improve Urban Thermal Environments (도시 열환경개선을 위한 공간지형적 특성에 따른 바람길 유동 비교 분석)

  • SEO, Bo-Yong;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.2
    • /
    • pp.75-88
    • /
    • 2017
  • This study analyzed wind flows based on spatial and geomorphological characteristics of Daegu Metropolitan City. A three-stage analysis was performed, starting with a comparison of meteorological relationships between local wind direction (synoptic wind) and local wind flow. In the second stage the study area was subdivided into districts and suburban districts to analyze the relative change of local wind flow. In stage three, the formation of wind corridor for local wind flow, wind flow for the entire urban space, and spatial relationships between flows were verified comparatively using KLAM_21. Three results are notable, the first of which is a low correlation between synoptic wind of a region, and local wind, flow in terms of meteorology. Secondly, observations of local wind flow at five downtown districts and two suburban districts showed that there were diverse wind directions at each measurement point. This indicates that the spatial and geomorphological characteristics of areas neighboring the measurement points could affect the local wind flow. Thirdly, verifying the results analyzed using KLAM_21, compared to Atomatic Weather System(AWS) measurement data, confirmed the reliability of the numerical modelling analysis. It was determined that local wind flow in a city performs a spatial function and role in ameliorating the urban heat island phenomena. This indicates that, when an urban planning project is designed, the urban heat island phenomena could be ameliorated effectively and sustainably if local wind flow caused by immediate spatial and geomorphological characteristics is confirmed systematically and techniques are intentionally applied to connect the flows spatially within areas where urban heat islands occur.

Comparison of the Refracting Power and Aberration according to the Measurement Change in Illumination and Area of the Pupils (조도와 동공 영역의 측정 변화에 따른 굴절력과 수차의 비교)

  • Kim, Bong-Hwan;Han, Seon-Hee;Park, Byeong-Gyu;Hwang, Hyeon-Ju;Bae, Ye-Sol;Seo, Jeong-Bin;Yeo, Ye-Eun;Yoon, Min-Jeong;Kim, Hak-Jun
    • Journal of Korean Clinical Health Science
    • /
    • v.4 no.2
    • /
    • pp.550-555
    • /
    • 2016
  • Purpose. We compared with the refracting power and aberration according to the measurement change in illumination and the pupils area by using the auto refraction instruments. Methods. In this study it were examined 64 eyes without eye disease, 21.4 (${\pm}2.54$) age, 32 (male 10, female 22) patients. Experiments in general illumination using the auto refraction instruments (HRK-8000A, Huvitz, Korea) was measured in both eyes 3 times and after scotopic for 30 minutes in a dark room blocked the light was measured in the same way. Aberration were measured coma, spherical aberration, high and low order aberrations in a general illumination (3500 lux) and low illumination (5 lux) of the pupil area 3.96 mm and 5.96 mm. Results. In the general illumination for measuring of the pupil area, the refractive power, coma, spherical aberration and low order aberration was no significant difference. In the low illumination, spherical aberration of the pupil area was $0.005({\pm}0.015){\mu}m$ in a 3.96mm, $0.014({\pm}0.020){\mu}m$ in a 5.96 mm and appeared a significant difference(p = 0.003). In general and low illumination on the results of comparing the measured values of the refractive power and aberration at the pupil area 3.96 mm, high order aberrations was $0.205({\pm}0.145){\mu}m$ in general illumination, $0.132({\pm}0.075){\mu}m$ in low illumination and appeared a significant differences(p = 0.001). High order aberrations at the pupil area 5.96 mm was $0.278({\pm}0.244){\mu}m$ in general illumination, $0.150({\pm}0.092){\mu}m$ in low illumination and appeared a significant differences(p = 0.000). Conclusions. When the eye refractive power measured by the automatic refraction does not depend on the illumination conditions and size of the observation pupil area, it was found that aberrations are affected by the illumination and the observation pupil area. It was found that the eye examination chamber illumination to obtain accurate measurement produces better results to decrease than to increase.

Development of Distortion Correction Technique in Tilted Image for River Surface Velocity Measurement (하천 표면영상유속 측정을 위한 경사영상 왜곡 보정 기술 개발)

  • Kim, Hee Joung;Lee, Jun Hyeong;Yoon, Byung Man;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.88-96
    • /
    • 2021
  • In surface image velocimetry, a wide area of a river is photographed at an angle to measure its velocity, inevitably causing image distortion. Although a distorted image can be corrected into an orthogonal image by using 2D projective coordinate transformation and considering reference points on the same plane as the water surface, this method is limited by the uncertainty of changes in the water level in the event of a flood. Therefore, in this study, we developed a tilt image correction technique that corrects distortions in oblique images without resetting the reference points while coping with changes in the water level using the geometric relationship between the coordinates of the reference points set at a high position the camera, and the vertical distance between the water surface and the camera. Furthermore, we developed a distortion correction method to verify the corrected image, wherein we conducted a full-scale river experiment to verify the reference point transformation equation and measure the surface velocity. Based on the verification results, the proposed tilt image correction method was found to be over 97% accurate, whereas the experiment result of the surface velocity differed by approximately 4% as compared to the results calculated using the proposed method, thereby indicating high accuracy. Application of the proposed method to an image-based fixed automatic discharge measurement system can improve the accuracy of discharge measurement in the event of a flood when the water level changes rapidly.

Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium (심근관류 SPECT의 정량적 분석에서 관류정량값 정상변이의 고려: 생존심근 평가에서의 유용성)

  • Paeng, Jin-Chul;Lim, Il-Han;Kim, Ki-Bong;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Purpose: Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. Materials and Methods: In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F = 28:27) of low-likelihood for coronary artery disease were enrolled and $^{201}TI$ rest/$^{99m}Tc$-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. $^{201}TI$ rest/$^{99m}Tc$-MIBI stress / $^{201}TI$ 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, $Q_{delay}$ (perfusion measurement), ${\Delta}_{delay}$ ($Q_{delay}$ - m) and $Z_{delay}$ (($Q_{delay}$ - m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Results: Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was $51.8{\pm}6.5$ and the highest segmental perfusion was $87.0{\pm}5.9$, and they are $58.7{\pm}8.1$ and $87.3{\pm}6.0$, respectively in women. In the viability assessment $Q_{delay}$ showed AUC of 0.633, while those for ${\Delta}_{delay}$ and $Z_{delay}$ were 0.735 and 0.716, respectively. The AUCs of ${\Delta}_{delay}$ and $Z_{delay}$ were significantly higher than that of $Q_{delay}$ (p = 0.001 and 0.018, respectively). The diagnostic performance of ${\Delta}_{delay}$, which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. Conclusion: On automatic quantification of myocardial perfusion SPECT, the normal variation of perfusion measurements were considerable among segments. In the viability assessment, the parameters considering normal variation showed better diagnostic performance than the direct perfusion measurement. This study suggests that consideration of normal variation is important in the analysis of measurements on quantitative myocardial perfusion SPECT.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Study on the Characteristics of Noise/Vibration in the Upright Laying Hen House (직립식 산란계사 내의 소음 진동 발생 현황 조사연구)

  • Lee S.J.;Chang D.I.;Chang H.H.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • This study was carried out to measure and analyze the characteristics of noise and vibration, and to analyze their effects on the productivity of layers, mechanical troubles, and abnormal wear-out failure of facilities and equipment of the layer house. The measurements of noise and vibration were taken at 13 layer farms nationwide for the operations of feed supplier system, feed distribution system, automatic egg collection system, ventilation system, blot conveyer for layer feces, and fur the case of with and without their operation by a sound level meter and a vibration measuring system in the layer house equipped with upright multi-tier cages. Measurement results showed that normal times were noise(N) 82 dB and vibration(V) 0.2072 cm/s, feed supplier system were 90 dB(N) and 2.8560 cm/s(V), feed distribution system were 90 dB(N) and 2.0222 cm/s(V), automatic egg collection system were 87 dB(N) and 0.1865 cm/s(V), ventilation system 88 dB(N) and 2.5364 cm/s(V), belt conveyer fur layer feces were 88 dB(N) and 0.2387 cm/s(V), and then maximum values of noise and vibration were 90 dB and 2.8560 cm/s, respectively, when feeding systems(feed supplying system and feed distribution system) were operated. Based on these results, an experiment is being conducted to find out the effect of noise and vibration on the productivity of layers in the layer house equipped with upright multi-tier cages.

  • PDF

Development of a Frequency Dependent Type Apex Locator with Automatic Compensation (자동 보정 주파수 의존형 근관장 측정기의 개발)

  • Kim, Deok-Won;Nam, Gi-Chang;Kim, Yeong-Ju;Lee, Seung-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.595-602
    • /
    • 1998
  • Among the apex locators, the frequency dependent type is more accurate and convenient to use than others, But the accuracy of the apex locator is still influenced by the presence of various electrolytes used in root canal treatments. In this study, we have developed a frequency dependent electronic apex locator minimizing the influence of the electrolytes on the measurement of root canal lengths. It was also confirmed that two frequencies of 500Hz and 100kHz are optimal for the measuring impedance compare with commercial product used(400Hz and 8kHz)a and there were no differences in accuracy among the three different types of the waveforms; sinusoidal, triangular, and rectangular waves(p>0.05). Impedance ratio of the two different frequencies represents the position of the file in root canal, and the voltage difference of two signals represents the status of the fluid in the root canal. As a result of compensation using the voltage differences, the errors were decreased on the average from +0.54mm to +0.18mm in $H_2O_2$ solution (p<0.01), and from -0.33mm to -0.01mm in NaOCl solution(p<0.01). The accuracies based on ${\pm}$0.5mm, in $H_2O_2$ and NaOCl solutions were improved with the automatic compensation from 71.1% and 91.1% to 82.2% and 100% respectively.

  • PDF