DOI QR코드

DOI QR Code

Development of Distortion Correction Technique in Tilted Image for River Surface Velocity Measurement

하천 표면영상유속 측정을 위한 경사영상 왜곡 보정 기술 개발

  • 김희정 (평화 엔지니어링 수자원부) ;
  • 이준형 (명지대학교 토목환경공학과) ;
  • 윤병만 (명지대학교 토목환경공학과) ;
  • 김서준 (주식회사 하이드로셈)
  • Received : 2020.12.18
  • Accepted : 2020.12.22
  • Published : 2021.06.30

Abstract

In surface image velocimetry, a wide area of a river is photographed at an angle to measure its velocity, inevitably causing image distortion. Although a distorted image can be corrected into an orthogonal image by using 2D projective coordinate transformation and considering reference points on the same plane as the water surface, this method is limited by the uncertainty of changes in the water level in the event of a flood. Therefore, in this study, we developed a tilt image correction technique that corrects distortions in oblique images without resetting the reference points while coping with changes in the water level using the geometric relationship between the coordinates of the reference points set at a high position the camera, and the vertical distance between the water surface and the camera. Furthermore, we developed a distortion correction method to verify the corrected image, wherein we conducted a full-scale river experiment to verify the reference point transformation equation and measure the surface velocity. Based on the verification results, the proposed tilt image correction method was found to be over 97% accurate, whereas the experiment result of the surface velocity differed by approximately 4% as compared to the results calculated using the proposed method, thereby indicating high accuracy. Application of the proposed method to an image-based fixed automatic discharge measurement system can improve the accuracy of discharge measurement in the event of a flood when the water level changes rapidly.

표면영상유속계를 이용한 유속 측정 시 하천의 넓은 영역을 경사지게 촬영하기 때문에 필연적으로 영상 왜곡이 발생하게 된다. 이와 같이 경사영상을 정사영상으로 변환하는 방법으로 수표면과 동일한 평면상의 참조점 좌표를 이용하는 2차원 투영 좌표 변환법을 사용할 경우 홍수 시 수위가 변할 경우 대응이 어렵다는 한계가 있다. 이에 본 연구에서는 수위가 변하더라도 참조점을 재설정할 필요가 없는 경사영상 왜곡 보정 방법을 개발하였다. 본 연구에서 개발한 기법은 높은 위치에 설정한 참조점의 좌표와 카메라의 좌표, 그리고 카메라의 수표면 사이의 연직거리 간의 기하학적인 관계를 이용해 수위 변화에도 대응할 수 있는 경사영상 보정 기법이다. 본 연구에서 개발한 영상 왜곡 보정 방법의 검증을 위해 실규모 하천 실험을 수행하였으며, 참조점 변환식에 대한 검증과 표면유속 측정 결과에 대한 검증을 수행하였다. 검증 결과 개발 기술의 경사영상 보정 정확도는 97% 이상을 나타냈고, 유속 검증 결과 개발 기술을 적용하여 산정한 유속을 비교한 결과 약 4% 이내의 차이를 보이는 것으로 나타나 높은 정확도 확보가 가능한 것으로 나타났다. 따라서 개발 기술을 영상 기반의 고정형 자동유량계측 시스템에 적용한다면 수위가 급변하는 홍수 시 유량측정의 정확도를 개선할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호20DPIW-C153760-02).

References

  1. Aya, S., Fujita, I., and Yagyu, M. 1995. Field-observation of flood in a river by video image analysis." Annual Journal of hydraulic Engineering 39(4): 447-452. (in Japanese) https://doi.org/10.2208/prohe.39.447
  2. Dramais, G., Coz, J.L., Camenen, B., and Hauet, A. 2011. Advantages of a mobile LSPIV method for measuring flood discharges and improving stage discharge curves. Journal of Hydro-environment Research 5(4): 301-312. https://doi.org/10.1016/j.jher.2010.12.005
  3. Fujita, I. and Komura, S. 1994. Application of video image analysis for measurements of river-surface flows. Proc. of Hydraulic Engineering, JSCE 38: 733-738. https://doi.org/10.2208/prohe.38.733
  4. Fujita, I., Aya, S., and Deguchi, T. 1997. Surface velocity measurement of river flow using video images of an oblique angle. Proc., 27th IAHR Congress, Theme B, San Francisco.
  5. Fujita, I., Muste, M., and Kruger, A. 1998. Large-scale particle image velocimetry for flow analysis in hydraulic application. Journal of Hydraulic Research, 36(3), 397-414. https://doi.org/10.1080/00221689809498626
  6. Fujita, I. and Aya, S. 2000. Refinement of LSPIV Technique for Monitoring River Surface Flows."Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000.
  7. Fujita, I. and Kunita, Y. 2011. Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera. Journal of Hydro-environment Research 5(4): 323-331. https://doi.org/10.1016/j.jher.2011.05.003
  8. Hauet, A., Kruger, A., Krajewski, W.F., Bradley, A., Muste, M., and Creutin, J.D. 2008. Experimental system for real-time discharge estimation using an image-based method. Journal of Hydrological Engineering 13(2): 105-110. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(105)
  9. Kantoush, S.A., Schleiss, A.J., Sumi, T., and Murasaki, M. 2011. LSPIV implementation for environmental flow in various laboratory and field cases. Journal of Hydro-environment Research 5(4): 263-276. https://doi.org/10.1016/j.jher.2011.07.002
  10. Kim, S.J., Yu, K.K., and Yoon, B.M. 2011. Real- time Discharge Measurement of the river using Fixed-type Surface Image Velocimetry. Journal of Korea Water Resources Association, KWRA, 44(5): 377-388. (in Korean) https://doi.org/10.3741/JKWRA.2011.44.5.377
  11. Meselhe, E.A., Peeva, T., and Muste, M. 2004. Large Scale Particle Image Velocimetry for Low Velocity and Shallow Water Flows. Journal of Hydraulic Engineering 130(9): 937-940. https://doi.org/10.1061/(asce)0733-9429(2004)130:9(937)
  12. Muste, M., Ho, H.-C., and Kim, D. 2011. Considerations on direct stream flow measurements using video imagery: Outlook and research needs. Journal of Hydro-environment Research 5(4): 289-300. https://doi.org/10.1016/j.jher.2010.11.002
  13. Roh, Y.S. 2005. Development of river discharge measurement technique using image analysis. Ph.D. thesis, Dept. of Civil and Env. Eng, Myongji University. (in Korean)