• 제목/요약/키워드: Automatic alignment

검색결과 134건 처리시간 0.031초

Generating Pylogenetic Tree of Homogeneous Source Code in a Plagiarism Detection System

  • Ji, Jeong-Hoon;Park, Su-Hyun;Woo, Gyun;Cho, Hwan-Gue
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.809-817
    • /
    • 2008
  • Program plagiarism is widespread due to intelligent software and the global Internet environment. Consequently the detection of plagiarized source code and software is becoming important especially in academic field. Though numerous studies have been reported for detecting plagiarized pairs of codes, we cannot find any profound work on understanding the underlying mechanisms of plagiarism. In this paper, we study the evolutionary process of source codes regarding that the plagiarism procedure can be considered as evolutionary steps of source codes. The final goal of our paper is to reconstruct a tree depicting the evolution process in the source code. To this end, we extend the well-known bioinformatics approach, a local alignment approach, to detect a region of similar code with an adaptive scoring matrix. The asymmetric code similarity based on the local alignment can be considered as one of the main contribution of this paper. The phylogenetic tree or evolution tree of source codes can be reconstructed using this asymmetric measure. To show the effectiveness and efficiency of the phylogeny construction algorithm, we conducted experiments with more than 100 real source codes which were obtained from East-Asia ICPC(International Collegiate Programming Contest). Our experiments showed that the proposed algorithm is quite successful in reconstructing the evolutionary direction, which enables us to identify plagiarized codes more accurately and reliably. Also, the phylogeny construction algorithm is successfully implemented on top of the plagiarism detection system of an automatic program evaluation system.

PAM 행렬 모델을 이용한 음소 간 유사도 자동 계산 기법 (Automatic Inter-Phoneme Similarity Calculation Method Using PAM Matrix Model)

  • 김성환;조환규
    • 한국콘텐츠학회논문지
    • /
    • 제12권3호
    • /
    • pp.34-43
    • /
    • 2012
  • 두 문자열 간의 유사도를 계산하는 문제는 정보 검색, 오타 교정, 스팸 필터링 등 다양한 분야에 응용될 수 있다. 동적 계획법 기반의 유사도 계산 방법을 통하여 한글 문자열의 유사도 계산을 위해서는 우선 음소간의 유사도에 대한 정의가 필요하다. 그러나 기존의 방법들은 수동적 설정에 의한 유사도 점수를 사용하고 있다는 한계점이 있다. 본 논문에서는 PAM(Point Accepted Mutation) 행렬과 유사한 확률 모델을 이용하여 변형 단어 집합으로부터 음소 간의 유사도를 자동적으로 계산하는 기법을 제안한다. 제안 기법은 주어진 변형 단어의 집합 내 유사한 단어 쌍을 찾아 문자열 정렬(Text Alignment)을 수행함으로써 음소 변형 규칙을 도출하고, 이로부터 각 음소 쌍의 상호 변형 빈도에 따른 유사도 점수를 계산한다. 실험 결과 특이도(Specificity) 77.2~80.4% 수준에서 불일치 여부에 따른 단순 점수 부여 방식에 비해서는 10.4~14.1%, 수동으로 음소 간 유사도를 직접 설정하는 방식에 비해서는 8.1~11.8%의 민감도(Sensitivity) 향상이 있음을 확인하였다.

Automatic Individual Tooth Region Separation using Accurate Tooth Curve Detection for Orthodontic Treatment Planning

  • Lee, Chan-woo;Chae, Ok-sam
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.57-64
    • /
    • 2018
  • In this paper, we propose the automatic detection method for individual region separation using panorama image. Finding areas that contain individual teeth is one of the most important tasks in automating 3D models through individual tooth separation. In the conventional method, the maxillary and mandibular teeth regions are separated using a straight line or a specific CT slide, and the tooth regions are separated using a straight line in the vertical direction. In the conventional method, since the teeth are arranged in a curved shape, there is a problem that each tooth region is incorrectly detected in order to generate an accurate tooth region. This is a major obstacle to automating the creation of individual tooth models. In this study, we propose a method to find the correct tooth curve by using the jawbone curve which is very similar to the tooth curve in order to overcome the problem of finding the area containing the existing tooth. We have proposed a new method to accurately set individual tooth regions using the feature that individual teeth are arranged in a direction similar to the normal direction of the tooth alignment curve. In the proposed method, the maxillary and mandibular teeth can be more precisely separated than the conventional method, and the area including the individual teeth can be accurately set. Experiments using real dental CT images demonstrate the superiority of the proposed method.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

지식 그래프와 딥러닝 모델 기반 텍스트와 이미지 데이터를 활용한 자동 표적 인식 방법 연구 (Automatic Target Recognition Study using Knowledge Graph and Deep Learning Models for Text and Image data)

  • 김종모;이정빈;전호철;손미애
    • 인터넷정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.145-154
    • /
    • 2022
  • 자동 표적 인식(Automatic Target Recognition, ATR) 기술이 미래전투체계(Future Combat Systems, FCS)의 핵심 기술로 부상하고 있다. 그러나 정보통신(IT) 및 센싱 기술의 발전과 더불어 ATR에 관련이 있는 데이터는 휴민트(HUMINT·인적 정보) 및 시긴트(SIGINT·신호 정보)까지 확장되고 있음에도 불구하고, ATR 연구는 SAR 센서로부터 수집한 이미지, 즉 이민트(IMINT·영상 정보)에 대한 딥러닝 모델 연구가 주를 이룬다. 복잡하고 다변하는 전장 상황에서 이미지 데이터만으로는 높은 수준의 ATR의 정확성과 일반화 성능을 보장하기 어렵다. 본 논문에서는 이미지 및 텍스트 데이터를 동시에 활용할 수 있는 지식 그래프 기반의 ATR 방법을 제안한다. 지식 그래프와 딥러닝 모델 기반의 ATR 방법의 핵심은 ATR 이미지 및 텍스트를 각각의 데이터 특성에 맞게 그래프로 변환하고 이를 지식 그래프에 정렬하여 지식 그래프를 매개로 이질적인 ATR 데이터를 연결하는 것이다. ATR 이미지를 그래프로 변환하기 위해서, 사전 학습된 이미지 객체 인식 모델과 지식 그래프의 어휘를 활용하여 객체 태그를 노드로 구성된 객체-태그 그래프를 이미지로부터 생성한다. 반면, ATR 텍스트는 사전 학습된 언어 모델, TF-IDF, co-occurrence word 그래프 및 지식 그래프의 어휘를 활용하여 ATR에 중요한 핵심 어휘를 노드로 구성된 단어 그래프를 생성한다. 생성된 두 유형의 그래프는 엔터티 얼라이먼트 모델을 활용하여 지식 그래프와 연결됨으로 이미지 및 텍스트로부터의 ATR 수행을 완성한다. 제안된 방법의 우수성을 입증하기 위해 웹 문서로부터 227개의 문서와 dbpedia로부터 61,714개의 RDF 트리플을 수집하였고, 엔터티 얼라이먼트(혹은 정렬)의 accuracy, recall, 및 f1-score에 대한 비교실험을 수행하였다.

영상처리를 이용한 안테나 객체 추출에 관한 연구 (A Study on Extraction of Antenna Object using Image Processing)

  • 유태근;김양우;곽내정
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.93-96
    • /
    • 2007
  • 안테나의 다양한 응용과 더불어 안테나 제작에 필요한 안테나 특성 측정에 관한 관심이 증대됨으로 안테나 측정 시스템의 정밀도가 더욱 필요하게 되었다. 안테나 측정시 사용자의 수동작을 기반으로 하는 기존의 시스템은 사용자의 위치 보정 작업에 기반을 함으로 오차를 유발한다. 따라서 안테나 특성의 자동 측정 시스템 도입이 필요하다. 본 논문에서는 안테나 자동 측정 시스템을 위한 영상 처리 알고리즘을 제안한다. 제안 알고리즘은 측정실 내에서 표준이득 혼 안테나에 대한 영상 정보 획득하고 획득된 영상 정보로부터 안테나 객체를 추출하고 AUT(Antenna Under Test)와 Probe의 자동 정렬을 위한 파라메터를 추출한다. 또한 장착된 안테나의 무게로 인한 AUT 접합부의 기울어짐과 왜곡 보정을 위한 오차 값을 측정한다.

  • PDF

자동 음성분할 및 레이블링 시스템의 구현 (Implementation of the Automatic Segmentation and Labeling System)

  • 성종모;김형순
    • 한국음향학회지
    • /
    • 제16권5호
    • /
    • pp.50-59
    • /
    • 1997
  • 본 논문에서는 한국어 음성 데이터베이스 구축을 위하여 자동으로 음소경계를 추출하는 자동 음성분할 및 레이블링 시스템을 구현하였다. 기존의 음성분할 및 레이블링 기술을 근간으로 본 시스템을 구현하였으며, 또한 사용자가 자동분할된 음소경계를 확인하여 그 경계를 쉽게 수정할 수 있도록 한글 모티프 환경에서 그래픽 사용자 인터페이스를 개발하였다. 개발된 시스템은 16kHz로 샘플링된 음성을 대상으로 하고 있으며, 레이블링 단위는 45개의 유사음소와 하나의 묵음으로 구성하였다. 그리고 언어학적 정보의 입력방식으로는 음소표기와 철자표기를 사용하였으며, 패턴매칭 방법으로는 hidden Markov model(HMM)을 이용하였다. 개발된 시스템의 각 음소 모델은 수작업에 의해서 음소단위로 분할한 음성학적으로 균형잡힌 445 단어 데이터베이스를 이용해서 훈련되었다. 그리고 본 시스템의 성능평가를 위해 훈련에 사용되지 않는 문장 데이터베이스에 대해서 자동 음성분할 실험을 수행하였다. 실험결과, 수작업에 의해서 분할된 음소경계위치와의 오차가 20ms 이내인 것이 74.7%였으며, 40ms이내에는 92.8%가 포함되었다.

  • PDF

PDA 환경에서 자동화자 확인의 계산량 개선을 위한 연구 (A Study for Complexity Improvement of Automatic Speaker Verification in PDA Environment)

  • 서창우;임영환;전성채;장남영
    • 융합신호처리학회논문지
    • /
    • 제10권3호
    • /
    • pp.170-175
    • /
    • 2009
  • 본 논문은 PDA 디바이스에서 개인정보를 보호하기 위한 자동화자확인 시스템을 제안한다. 최근 M-커머스와 같은 모바일 환경을 위한 PDA의 용량이 확장되고 사용이 증가되고 있다. 그러나 너무 많은 계산량 때문에 PDA 디바이스에서 자동화자확인의 실질적인 응용은 여전히 많은 어려움이 존재한다. 본 논문에서는 이러한 문제점을 해결하기 위해서 음성발성 동안 스펙트럼 차감법과 음성 검출과 같은 전처리를 수행함으로써 계산량을 줄일 수 있는 방법을 적용하였다. 또한 빠른 처리 결과를 얻기 위한 은닉마코프모델의 최적 상태 정합과 시퀀스 확률비 테스트를 적용하였다. 전체적인 시스템은 PDA디바이스의 제한된 메모리와 낮은 CPU 속도에 적합하도록 간결하게 구현하였다.

  • PDF

건설자재 통합정보 관리를 위한 시스템 모델 구현 (Development of System Model for Integrated Information Management of Construction Material)

  • 한충한;주기범
    • 정보처리학회논문지D
    • /
    • 제16D권3호
    • /
    • pp.433-440
    • /
    • 2009
  • 최근 건설 분야의 정보화 기술이 발달함에 따라 건설업무의 생산성 향상과 비용 절감을 위한 다양한 건설자재 정보 서비스 차원의 web 기반 온라인 시스템이 급증하는 추세이다. 그러나 이러한 시스템들이 제공 중인 품질 및 규격등 건설자재정보가 표준화되지 못하여 특정자재의 정보획득시 여러 정보시스템을 이용하거나 유사한 작업을 반복하는등 건설현장 실무자들의 자재정보 활용에 있어 많은 어려움을 겪고 있다. 이에 본 연구에서는 국제 데이터 상품 속성 시스템(GDAS, Global Data Alignment System)을 기준으로 건설자재 정보항목을 정형화하고 건설자재 통합정보 관리를 위한 시스템 모델을 설계하였다. 본 시스템은 건설공정별 국제 표준분류체계(OmniClass Part-22)와 유엔 표준 제품 및 서비스 분류체계(UNSPSC, United Nations Standard Products and Services Classification)를 적용한 건설 자재의 자동 분류, 자재정보의 조건별 복합검색, 전자카탈로그의 실시간 자동구현, RFID 검색 및 관리 기능을 지원함으로써 자재정보의 효율적인 관리 및 활용이 가능하다.

정보검색을 위한 외래어 자동표기 모델 (Automatic Foreign Word Transliteration Model for Information Retrieval)

  • 이재성;최기선
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 1997년도 제4회 학술대회 논문집
    • /
    • pp.17-24
    • /
    • 1997
  • 조사에 따르면 한글 문서에서 사용되는 단어 중 외래어 또는 영어가 포함된 단어가 약 26%정도를 차지하고 있으며, 이는 정보검색의 중요 색인어로 사용된다(권윤형 1996). 그러나 이들 단어들은 서로 같은 단어인데도 영어로 표기되기도 하고 이형의 외래어들로 표기되기도 하여, 정보검색의 효율을 떨어뜨리고 있다. 본 논문에서는 영어 단어와 그에 대응되어 표기되는 외래어들을 찾기 위한 한 단계로서, 영어를 한글로 음차(transliteration)하여 자동표기하는 통계적 모델을 제안하고 실험한다. 제안된 모델은 통계적 기계번역 방식과 그의 한 방법인 문서 정렬(text alignment) 방식에 근거하고 있다. 특히 이 모델에서는 효과적으로 발음의 단위를 분리한 다음 정렬을 하여. 전체적인 계산량을 줄이고 성능도 향상시켰다. 음차표기는 피봇방식과 직접방식의 두가지로 구현하였다. 피봇방식은 영어에서 발음을 생성한 후, 그 발음을 다시 한글로 표기하는 방식이고, 직접방식은 직접 영어 단어에서 한글 표기로 포기하는 방식이다. 두 방식을 제안된 모델을 이용하여 비교 테스트한 결과 직접방식이 보다 정확하게 표준 외래어로 표기하였다.

  • PDF