• Title/Summary/Keyword: Automatic Weather System (AWS)

Search Result 156, Processing Time 0.025 seconds

Case study on the Accuracy Assessment of the rainrate from the Precipitation Radar of TRMM Satellite over Korean Peninsula

  • Chung, Hyo-Sang;Park, Hye-Sook;Noh, Yoo-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.103-106
    • /
    • 1999
  • The Tropical Rainfall Measuring Mission(TRMM) is a United States-Japan project for rain measurement from space. The first spaceborne Precipitation Radar(PR) has been installed aboard the TRMM satellite. The ground based validation of the TRMM satellite observations was conducted by TRMM science team through a Global Validation Program(GVP) consisted of 10 or more ground validation sites throughout the tropics. However, TRMM radar should always be validated and assessed against reference data to be used in Korean Peninsula because the rainrates measured with satellite varies by time and space. We have analyzed errors in the comparison of rainrates measured with the TRMM/PR and the ground-based instrument i.e. Automatic Weather System(AWS) by means of statistical methods. Preliminary results show that the near surface rainrate of TRMM/PR are highly correlated with ground measurements especially for the very deep convective rain clouds, though the correlation is changed according to the type and amount of precipitating clouds. Results also show that TRMM/PR instrument is inclined to underestimate the rainrate on the whole over Korea than the AWS measurement for the cases of heavy rainfall.

  • PDF

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF

Study on Construction of Weather Monitoring System in Local Mountain Area (국부산지에서의 모니터링 시스템 구축에 관한 연구)

  • Ji, Hyun-Min;Kim, Jang-Hwan;Kim, Eung-Sik
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.185-191
    • /
    • 2010
  • 우리나라의 산악기상은 평지에서 나타나는 기상과는 다른 양상을 띠게 되어 서로 가까운 지역일지라도 전혀 다르고 복잡한 기상현상을 나타낸다. 국내에서는 모든 바람에 관한 자료는 평지의 AWS(Automatic Warning System) 기상관측 자료에 의해서만 의존한다. 본 연구는 임내 국부산지에서의 기상 모니터링 시스템을 웹기반으로 구축하였으며, 이를 통하여 얻어진 바람데이터와 인근 AWS에서의 얻어진 자료를 비교 분석 하였다. 분석 결과 습도와 온도는 유사한 패턴을 보이고 있으나 풍향과 풍속은 전혀다른 패턴을 보여주고 있어 실제산지에서의 기상데이터는 AWS와 일치하지 않는 것을 알 수 있다.

  • PDF

Relationship between Urban Environment and Local Temperature for Managing Urban Heat Island Effect in Neighborhood (근린단위의 도시열섬관리를 위한 국지온도와 도시환경의 관계)

  • Lee, Gunwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.806-816
    • /
    • 2017
  • This study aims to offer effective policies for managing local temperatures and reducing the heat island effect by identifying elements that affect local temperatures. The three elements of natural environment, land use, and land coverage were first selected, and then control factors were applied, including season, weather, and measurement units for wind speed. In order to analyze these factors' relations to summer temperatures, an integrated model was developed, and an analysis was conducted of the urban heat island reduction effect of elements impacting local temperatures. The analysis used nationwide weather system (AWS) data from July and August 2007 and 2011-2016, land coverage data provided by the Ministry of Environment, and land use area data from local governments after rearranging them based upon their falling within a 500-meter radius ($0.79km^2$) of AWS measuring points. The study results show that the natural environment, land use, and land coverage all have a relation to changes in local temperatures. Natural elements have the greatest impact, and land use has the lowest. The results could provide basic data for establishing more effective policies to mitigate the heat island effect and strategies for enhancing the sustainability of cities.

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.

Spatio-Temporal Patterns of Extreme Precipitation Events by Typhoons Across the Republic of Korea (태풍 내습 시 남한의 극한강수현상의 시.공간적 패턴)

  • Lee, Seung-Wook;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.3
    • /
    • pp.384-400
    • /
    • 2013
  • In this study, spatio-temporal patterns of extreme precipitation events caused by typhoons are examined based on observational daily precipitation data at approximately 340 weather stations of Korea Meterological Administration's ASOS (Automated Synoptic Observation System) and AWS (Automatic Weather System) networks for the recent 10 year period (2002~2011). Generally, extreme precipitation events by typhoons exceeding 80mm of daily precipitation commonly appear in Jeju Island, Gyeongsangnam-do, and the eastern coastal regions of the Korean Peninsula. However, the frequency, intensity and spatial extent of typhoon-driven extreme precipitation events can be modified depending on the topography of major mountain ridges as well as the pathway of and proximity to typhoons accompanying the anti-clockwise circulation of low-level moisture with hundreds of kilometers of radius. Yellow Sea-passing type of typhoons in July cause more frequent extreme precipitation events in the northern region of Gyeonggi-do, while East Sea-passing type or southern-region-landfall type of typhoons in August-early September do in the interior regions of Gyeongsangnam-do. These results suggest that when local governments develop optimal mitigation strategies against potential damages by typhoons, the pathway of and proximity to typhoons are key factors.

  • PDF

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer (WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증)

  • Byun, Ui-Yong;Hong, Song-You;Shin, Hyeyum;Lee, Ji-Woo;Song, Jae-Ik;Hahm, Sook-Jung;Kim, Jwa-Kyum;Kim, Hyung-Woo;Kim, Jong-Suk
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

Characteristics of Precipitation and Temperature at Ulleung-do and Dok-do, Korea for Recent Four Years(2005~2008) (최근 4년간(2005~2008) 울릉도와 독도의 강수 및 기온 특성)

  • Lee, Young-Gon;Kim, Baek-Jo;Park, Gil-Un;Ahn, Bo-Young
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1109-1118
    • /
    • 2010
  • Characteristics of precipitation and temperature in Ulleung-do and Dok-do were analyzed with hourly accumulated precipitation and mean temperature data obtained from Automatic Weather System(AWS) for latest four years(2005~2008). In Ulleung-do, total annual mean precipitation for this period is 1,574.4 mm, which shows larger amount than 1434.2 mm of whole Korean peninsula for latest 10 years(1999~2008) and 1,236.2 mm at Ulleung-do on common years(1971~2000), shows that the trend of precipitation gradually increases during the recent years. This amount is also 1.4 times larger than the total annual mean precipitation of 660.1 mm in Dok-do. Mean precipitation intensity(mm $h^{-1}$) at each time of a day in each month at Ulleung-do represents that the maximum values larger than $3.0\;mm\;h^{-1}$ were shown in May and on 0200 LST, whereas these were found in August and 0700 LST with $3.1\;mm\;h^{-1}$ in Dok-do. The difference of the precipitation amount and its intensity between Uleung-do and Dok-do is explained by the topological effect came from each covering area, and this fact is also identified from similar comparison of the precipitation characteristics for the islands in West Sea. The annual mean temperature of $14.0^{\circ}C$ in Dok-do is $1.2^{\circ}C$ higher than that of $12.8^{\circ}C$ in Ulleung-do. Trends of monthly mean temperature in both islands are shown to increase for the observed period.

Development of Medium and Long-Range Atmospheric Diffusion Modeling System for Emergency Responses (비상 대응을 위한 중$\cdot$장거리 대기 확산 모형의 개발)

  • 김동영;전영신;이영복;오성남;정효상
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.147-148
    • /
    • 1999
  • 대기 화산 모형은 유독 화학 물질이나 방사능 물질 누출 사고시, 방재 대응에 매우 중요한 도구로 사용될 수 있다. 이런 목적을 위해 미국, 유럽 등에서는 1980년을 전후하여 모형 체계 개발에 착수하였고, 현재는 실용화되어 현업에서 운용되고 있다(Lee, et. al, 1997; J. Ehrhardt, 1998). 국내에서는 원자력 안전 기술원을 중심으로 원자력 발전소 주변 반경 십여 km지역에 위치한 기상청의 자동 종합 기상 측정 장치(AWS, Automatic Weather Station)의 실측 바람장을 기반으로 확산 예측을 수행할 수 있는 시스템을 운용하고 있다(원자력안전기술원, 1999).(중략)

  • PDF

The Prediction of the location and electric Power for Small Wind Powers in the H University Campus (대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구)

  • Cho, Kwan Haeng;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.