• Title/Summary/Keyword: Automatic Water Management

Search Result 158, Processing Time 0.026 seconds

Development of decision support system for water resources management using GloSea5 long-term rainfall forecasts and K-DRUM rainfall-runoff model (GloSea5 장기예측 강수량과 K-DRUM 강우-유출모형을 활용한 물관리 의사결정지원시스템 개발)

  • Song, Junghyun;Cho, Younghyun;Kim, Ilseok;Yi, Jonghyuk
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.22-34
    • /
    • 2017
  • The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.

Patterns and Trends of Water Level and Water Quality at the Namgang Junction in the Nakdong River Based on Hourly Measurement Time Series Data (낙동강 남강 합류부 수위와 수질 패턴 및 추세)

  • Yang, Deuk Seok;Im, Teo Hyo;Lee, In Jung;Jung, Kang Young;Kim, Gyeong Hoon;Kwon, Heon Gak;Yoo, Je-Chul;Ahn, Jung Min
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.63-74
    • /
    • 2018
  • As part of the Four Major Rivers Restoration Project, multifunctional weirs have been constructed in the rivers and operated for river-level management. As the weirs play a role in draining water from tributaries, the aim of this study was to determine the influence of the weirs on the water level of the Nam River, which is one of the Nakdong River's tributaries. Self-organizing maps (SOMs) and a locally weighted scatterplot smoothing (LOWESS) technique were applied to analyze the patterns and trends of water level and quality of the Nakdong River, considering the operation of the Changnyeong-Haman weir, which is located where the Nam River flows into the Nakdong River. The software program HEC-RAS was used to find the boundary points where the water is well drained. Per the study results at the monitoring points ranging between the junction of the two rivers and 17.5 km upstream toward the Nam River, the multifunctional weir influenced the water level at the Geoyrong and Daesan observation stations on the Nam River and the water quality based on automatic monitoring at the Chilseo station on the Nakdong River was affected strongly by the Nakdong River and partly by the Nam River.

Flood Predicion of Dorimcheon Stream basin using LSTM (LSTM 기법을 이용한 도림천 유역의 침수 예측)

  • Se Dong Jang;Byunghyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.513-513
    • /
    • 2023
  • 최근 이상기후의 영향으로 국지성 및 집중호우로 인한 침수 피해가 증가하고 있다. 도시유역의 홍수는 사회적·경제적으로 큰 손실을 야기할 수 있어 실제 호우에 대한 침수 양상을 신속하게 예측하는것은 매우 중요하다. 이로 인해 침수 해석에 대한 결과를 빨리 제공할 수 있는 기계학습을 기반으로 한 도시 홍수 분석에 대한 연구가 증가하고 있다. 본 연구에서 적용한 LSTM(Long Short-Term Memory) 신경망은 기존 RNN(Recurrent neural network)이 가지고 있는 장기 의존성 문제를 해결하기 위해 고안된 모델으로 시계열 데이터에 대한 예측능력이 뛰어나다는 장점을 가지고있다. LSTM 신경망은 강우에 대한 격자별 침수심을 예측하기 위해 사용되었으며, 입력자료로 2000~2022년도에 걸친 도림천 유역의 침수피해를 야기한 지속시간 6시간 AWS(Automatic Weather System) 관측 강우 자료를 사용하였고 목표값으로 수집된 도림천 유역의 강우자료를 이용하여 SWMM(Storm Water Management Model)의 유출 결과를 바탕으로 수행된 2차원 침수해석 모의 결과를 사용하였다. 연구유역의 SWMM 배수 관망 입력자료의 정확성을 높이기 위해 서울시 하수관로 수위 현황 자료를 활용하여 매개변수 조정을 실시하였으며, 하수관로의 실측 수위와 모의 수위를 일치시켰다. LSTM 신경망을 이용하여 격자별로 예측된 침수심 데이터를 시각화하여 침수흔적도와 비교하였다.

  • PDF

Analysis of Applicability by Filter Technique for Water Level Correction of Agricultural Canal (농업용 수로부의 수위 보정을 위한 필터기법별 적용성 분석)

  • Joo, Donghyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-hoon;Yun, Hyung Chang;Park, Sang-Bin;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.51-68
    • /
    • 2023
  • Due to the recent integrated water management policy, it is important to identify a reliable supply amount for establishing an agricultural water supply plan. In order to identify the amount of agricultural water supply, it is essential to calculate the discharge by measuring the water level and flow velocity of reservoirs and canal agricultural water, and quality control to ensure reliability must be preceded. Unlike agricultural reservoirs, canal agricultural water are more sensitive to the surrounding environment and reservoir irrigation methods (continuous, intermittent irrigation, etc.), making it difficult to estimate general water level patterns and at the same time a lot of erroneous data. The Korea Rural Community Corporation is applying a filter technique as a quality control method capable of processing large quantities and real-time processing of canal agricultural water level data, and applicability evaluation is needed. In this study, the types of errors generated by the automatic water level measurement system were first determined. In addition, by using the manual quality control data, a technique with high applicability is derived by comparing and analyzing data calibrated with Gaussian, Savitzky-Golay, Hampel, and Median filter techniques, RMSE, and NSE, and the optimal parameters of the technique range was derived. As a result, the applicability of the Median filter was evaluated the highest, and the optimal parameters were derived in the range of 120min to 240min. Through the results of this study, it is judged that it can be used for quantitative evaluation to establish an agricultural water supply plan.

A Study on Estimation of Target Precipitation in Seoul using AWS minutely Rainfall Data (AWS 분(分) 단위 강우자료를 이용한 서울지역 특성에 따른 행정자치 구(區)별 목표강우량 산정에 관한 연구)

  • Kim, Min-seoka;Son, Hong-mina;Moon, Young-il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • It is very important to decide probability precipitation that is used as hydraulic structure design and target rainfall for urban disaster prevention. Especially, National Emergency Management Agency (NAMA) announced target rainfall from probability precipitation in korea on city and district level. It make use to performance evaluation of disaster prevention and planning of development for disasters prevention capacity target. In this study was calculated target rainfall that is duration 1~3 hour based unit of gu (borough) by point and regional frequency analysis using rainfall data of Surface Synoptic Stations (SSS) and Automatic Weather Stations (AWS). The result of this study can utilized as a reference to related business such as disaster capability assessment and achievement of prevention capacity target against disasters. And it also will be contribute to establishment of prevention capacity target against disasters.

The study on the development of intelligent optical communication system to monitor flood and water pollution (홍수 및 수질 오염 감시용 지능형 고속 광 통신 시스템 개발에 관한 연구)

  • Lee, Jin-Young
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.351-358
    • /
    • 2012
  • This study is aimed at suggesting optical communication equipment that can deliver high quality video information in high speed, to efficiently handle the flood and water pollution in the river basin. This system is cheaper than existing equipment, and can monitor optical Internet as well as the condition of equipment. Generally, the communication equipment to prevent flood is installed in an unmanned control box and operated by the flood control office situated at the fiver mouth in a long distance section. Therefore, it is hard to promptly cope with communication interruptions, which occur by the cutting or aging of the optical cable. Under the circumstances, this study suggested an efficient system that can deliver high quality video information in high speed (Optical Transmission Convert System) by using optical fiber. The system also solves problems by making use of automatic protection switching (APS) when an accident happens. Its real-time monitoring function gives notice of the problem-occurring points. The system is expected to be widely used in various areas such as intelligent traffic systems.

A Study on the Wastewater and Air Pollution, Noise and Vibration Management and Discharge Control at the Industries (환경오염의 방지시설의 운영에 관한 실태조사)

  • Kim Nam Cheon;Woo Se Hong;Koo Sung Hoi
    • Journal of environmental and Sanitary engineering
    • /
    • v.1 no.1 s.1
    • /
    • pp.81-96
    • /
    • 1986
  • 510 random samples were studied during the months of may through November 1985 at the various industries and conclustions were made as follows; 1. $43.94\%$ of the plants studied operated their plants with semiautomatic control system, and better efficiency were observed at the plants where automatic control systems emplorid and also large industries showed more tendency adopting the automatic plant control system. 2. Overall efficiency of the treatment plants were seen much higher at the first and secand discharge class categories then the lower discharge classes, $80.79\%$ of the plants were see their daily plant operation being controlled by the operator himself. 3. The main causes of the plant stopage and in efficient discharge control were found to be malfunctioning of the plants machineries and equipment or inadequate decision made by the management to save chemicals or electricity. 4. The study showed $60\%$ of the industry treated their wastwater wholly and the rest discharged only with dilution without receiving any further treatment, and this tendency pronounced at the 4th and 5th class discharge category industries. 5. $66.17\%$ of the industry had their storage capacity to accommodate the waste discharge during plants outage while $92.67\%$ of the air pollution discharge industries had no means for the plant outage. 6. $56.77\%$ of the studied industry maintained 24 hour operation of their discharge control systems whill $18.67\%$ of air pollution discharge industries and $10.53\%$ of the waste water discharge industries showed no control effort during the night.

  • PDF

Cause Analysis and Improvement Suggestion for Flood Accident in Dorimcheon - Focused on the Tripping and Isolation Accidents (도림천에서 발생한 고립 및 실족사고의 원인분석을 통한 개선방안 도출에 관한 연구)

  • Lee, Kyung-Su;Jeon, Jong-Hyeong;Kim, Tai-Hoon;Kim, Hyunju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.25-36
    • /
    • 2021
  • This study analyzed the causes of flood accidents, such as isolation and lost footing accidents in Dorimcheon, to provide legal and institutional improvements. For cause analysis, Field Investigation, Stakeholder Interview, Report, manual, Law et al. Review, Analysis of water level change characteristics, automatic alarm issuance standard level analysis, and evacuation time according to river control were evaluated. Dorimcheon has the characteristics of a typical urban river, which is disadvantageous in terms of water control. In addition, the risk of flood accidents is high because the section where fatal accidents occur forms sharply curved channels. Tripping and isolation accidents occur in the floodplain watch and evacuation stage, which is the stage before the flood watch and warning is issued. Because floodplain evacuation is issued only when the water level rises to the floodplain, an immediate response according to the rainfall forecast is essential. Furthermore, considering that the rate of water level rise is up to 2.62 cm/min in Sillimgyo 3 and Gwanakdorimgyo, sufficient evacuation time is not secured after the floodplain watch is issued. Considering that fatal accidents occurred 0.46 m below the standard water level for the flood watch, complete control is very important, such as blocking the entry of rivers to prevent accidents. Based on these results, four improvement measures were suggested, and it is expected to contribute to the prevention of Tripping and Isolation Accidents occurring in rivers.

Pollutant Characteristics of Nonpoint Source Runoff in Okcheon Stream (강우시 소옥천에서의 비점오염원 유출 특성)

  • Oh, Young-Taek;Park, Je-Chul;Kim, Dong-Sup;Rhyu, Jae Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.657-663
    • /
    • 2004
  • The aims of this study are the characterization of runoff from nonpoint source, the analysis of the pollutant loads and an establishment of a management plan for nonpoint source of Okcheon. For this purpose the basin of the stream So-okcheon was selected to the investigated. During the period from May 29 to July 21 in 2003, the water automatic sampler system has been installed in Okkagkyo and parameters such as SS, COD, TOC, TP and TN were analyzed. The pollutants of nonpoint source seem to be washed out along the stream water in the beginning of rainfall, remain in water and cause the stream pollution. The runoffs during heavy rainfall, especially, much higher concentration of SS than those during dry period. With respect to the annual loading of pollutants of the nonpoint source, the COD was 124 ton/yr, TOC 396 ton/yr, TN 1,429 ton/yr and TP 4.2 ton/yr in the year 2002. With respect to the pollutants loading of the nonpoint source, the COD was 375 ton/yr(95% of the total COD loading of 394 ton/yr), TOC 844 ton/yr(96% of the tatal TOC loading of 876 ton/yr), TN 1,985 ton/yr(96% of the total TN loading of 2,062 ton/yr) and TP 37.1 ton/yr(92% of the total TP loading of 40.3 ton/yr) in the year 2003.

Developing Surface Water Quality Modeling Framework Considering Spatial Resolution of Pollutant Load Estimation for Saemangeum Using HSPF (오염원 산정단위 수준의 소유역 세분화를 고려한 새만금유역 수문·수질모델링 적용성 검토)

  • Seong, Chounghyun;Hwang, Syewoon;Oh, Chansung;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.83-96
    • /
    • 2017
  • This study presented a surface water quality modeling framework considering the spatial resolution of pollutant load estimation to better represent stream water quality characteristics in the Saemangeum watershed which has been focused on keeping its water resources sustainable after the Saemangeum embankment construction. The watershed delineated into 804 sub-watersheds in total based on the administrative districts, which were units for pollutant load estimation and counted as 739 in the watershed, Digital Elevation Model (DEM), and agricultural structures such as drainage canal. The established model consists of 7 Mangyung (MG) sub-models, 7 Dongjin (DJ) sub-models, and 3 Reclaimed sub-models, and the sub-models were simulated in a sequence of upstream to downstream based on its connectivity. The hydrologic calibration and validation of the model were conducted from 14 flow stations for the period of 2009 and 2013 using an automatic calibration scheme. The model performance to the hydrologic stations for calibration and validation showed that the Nash-Sutcliffe coefficient (NSE) ranged from 0.66 to 0.97, PBIAS were -31.0~16.5 %, and $R^2$ were from 0.75 to 0.98, respectively in a monthly time step and therefore, the model showed its hydrological applicability to the watershed. The water quality calibration and validation were conducted based on the 29 stations with the water quality constituents of DO, BOD, TN, and TP during the same period with the flow. The water quality model were manually calibrated, and generally showed an applicability by resulting reasonable variability and seasonality, although some exceptional simulation results were identified in some upstream stations under low-flow conditions. The spatial subdivision in the model framework were compared with previous studies to assess the consideration of administrative boundaries for watershed delineation, and this study outperformed in flow, but showed a similar level of model performance in water quality. The framework presented here can be applicable in a regional scale watershed as well as in a need of fine-resolution simulation.