• Title/Summary/Keyword: Automatic Platform

Search Result 273, Processing Time 0.032 seconds

A Study on Contents Manufactur ing System for Massive Contents Production

  • Ji, Su-Mi;Lee, Jeong-Joong;Kwon, Sang-Pill;Kim, Jin-Guk;Yu, Chang-Man;Lee, Jeong-Gyu;Jeon, Se-Jong;Jeong, Tae-Wan;Kang, Dong-Wann;Park, Sang-Il;Song, Oh-Young;Lee, Jong-Weon;Yoon, Kyung-Hyun;Han, Chang-Wan;Baik, Sung-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1832-1842
    • /
    • 2010
  • This paper introduces a new automatic processing system: "Contents Factory" for the mass production of contents. Through the contents factory, we provide an authoring environment to improve the usability and the efficiency in producing contents. The contents factory integrates recycling techniques for contents resources, contents development engines, authoring tools, and interfaces into a total processing system. Since it is multi-platform based including mobile devices as well as PCs, one can easily produce complete PC and mobile contents from raw resources. We produced an example, "Sejong square" via the contents factory in order to demonstrate its effectiveness and usability.

Integrated Korean Flora Database: A versatile web-based database for dissecting flora investigations with climate data

  • Yeon, Jihun;Kim, Yongsung;Kim, Hyejeong;Kim, Juhyun;Park, Jongsun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.32-32
    • /
    • 2018
  • Flora investigations in Korea have been conducted by many researchers for diverse purposes. Accumulated flora investigation data has not been utilized efficiently because there is no accessible database for comparison. To overcome this shortcoming, we constructed web-based database of flora investigation, named as the Integrated Korean Flora Database (IKFD; http://www.floradb.net/intro.php). Until now, 284 flora references (263 papers, 14 reports and books, and 7 unpublished papers written in between 1962 and 2017) were digitalized into the database. From 134,711 records, 4,301 species belonging to 228 families and 1,079 genera were identified via mapping with two major Korean plant species lists. Polygon areas originated from references were used for distribution of plant species, identifying precise distribution area. It will be a better index to show plant ecological characteristics. Collected micro-climate data provided by Korea Meteorology Administration were also integrated in IFKD for understanding correlation between distribution of plants and micro-climate. Cold hardiness zone which has been utilized for classifying climate zones. 12 out of 26 zones identified based on micro-climate data in Korea were mapped with distribution of plants. More than half species were appeared in zone 6a, 6b, 7a, and 7b. Taken together with these results, IKFD will be a fundamental platform for understanding plants in Korea flora investigation as well as a new standard for classifying distribution of plants. Moreover, Biodiversity Observation Database (BODB; http://www.biodiversitydb.info/intro.php) which integrates plant distribution data was also integrated for further studies.

  • PDF

The Design of an Intelligent Assembly Robot System for Lens Modules of Phone Camera.

  • Song, Jun-Yeob;Lee, Chang-Woo;Kim, Yeong-Gyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.649-652
    • /
    • 2005
  • The camera cellular phone has a large portion of cellular phone market in recent year. The variety of a customer demand makes a fast model change and the spatial resolution is changed from VGA to multi-mega pixel. The 1.3 mega pixel (MP) camera cellular phone was first released into the Korean market in October 2003. The major cellular phone companies released a 2MP camera cellular phone that supports zoom function and a 2MP camera cellular phone is settled down with the Korea cellular phone market. It makes a keen competition in price and demands automation for phone camera module. There is an increasing requirement for the automatic assembly to correspond to a fast model change. The hard automation techniques that rely on dedicated manufacturing system are too inflexible to meet this requirement. Therefore in this study, this system is designed with the flexibility concept in order to cope with phone camera module change. The system has a same platform that has X-Y-Z motion or X-Z motion with ${\mu}m$order accuracy. It has a special gripper according to the type of a component to be put together. If the camera model changes, the gripper may be updated to fit for the camera module. The controller of this system acquires the data sets that have the information about the assembly part by the tray. This information is obtained ahead of an inspection step. The controller excludes an inferior part to be assembled by using this information to diminish the inferior goods. The assembly jig used in this system has a function of self adjustment that reduces the tact time and also diminish the inferior goods. Finally, the intelligent assembly system for phone camera module will be designed to get a flexibility to meet model change and a high productivity with a high reliability.

  • PDF

Omni-directional Vision SLAM using a Motion Estimation Method based on Fisheye Image (어안 이미지 기반의 움직임 추정 기법을 이용한 전방향 영상 SLAM)

  • Choi, Yun Won;Choi, Jeong Won;Dai, Yanyan;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.868-874
    • /
    • 2014
  • This paper proposes a novel mapping algorithm in Omni-directional Vision SLAM based on an obstacle's feature extraction using Lucas-Kanade Optical Flow motion detection and images obtained through fish-eye lenses mounted on robots. Omni-directional image sensors have distortion problems because they use a fish-eye lens or mirror, but it is possible in real time image processing for mobile robots because it measured all information around the robot at one time. In previous Omni-Directional Vision SLAM research, feature points in corrected fisheye images were used but the proposed algorithm corrected only the feature point of the obstacle. We obtained faster processing than previous systems through this process. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we remove the feature points of the floor surface using a histogram filter, and label the candidates of the obstacle extracted. Third, we estimate the location of obstacles based on motion vectors using LKOF. Finally, it estimates the robot position using an Extended Kalman Filter based on the obstacle position obtained by LKOF and creates a map. We will confirm the reliability of the mapping algorithm using motion estimation based on fisheye images through the comparison between maps obtained using the proposed algorithm and real maps.

Development of a .NET-based Explorer Supporting WebDAV (웹데브를 지원하는 닷넷 기반의 탐색기 개발)

  • Jung, Hye-Young;Ahn, Geon-Tae;Park, Yang-Soo;Lee, Myung-Joon
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.703-710
    • /
    • 2004
  • WebDAV is a protocol to support collaboration among one or more groups in geographically distant locations through the internet. WebDAV extends the web communication protocol HTTP/1.1 to provide a standard infrastructure for .supporting asynchronous collaboration for various contents across the internet. A WebDAV client uses HTTP requests to perform a renewal and update action to the resources in WebDAY servers. So, it is desirable that the client supports the ability of authoring and version management with a good concurrency control and property management. In this paper, to enhance usability, we developed a .NET-based WebDAV client with a user interface similar to the Windows Explorer. The developed WebDAV client supports easy launching of the authoring application and appropriate lock control for the server resources. In addition, through the functionality of process monitoring, it supports automatic update of the server resources when the modification of the resources are completed by the user. The WebDAY client is a .NET-based application written in the C# language, running on any platform supporting a .NET framework.

Implementing Blockchain Based Secure IoT Device Management System (블록체인 기반 안전한 사물인터넷 장치 관리 시스템 구현)

  • Kim, Mihui;Kim, Youngmin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1343-1352
    • /
    • 2019
  • To manage the Internet of Things(IoT) Network, which consists of a large number of various devices, a secure and automatic method of strengthening the IoT network is being proposed. Blockchain has a 'smart contract' element of autonomous execution method, which is emerging as a way to not only exchange data quickly without mediators but also securely and automatically manage processes between IoT devices. In this paper, we implement a prototype of the entire IoT device management system based on the EOSIO with DPoS(Distributed Proof of Stake)-based blockchain structure, proposed as a prior study, including the user application DApp(Decentralized Application) and the actual IoT devices (Raspberry Pi-based device, and smart lamp) that interact with the blockchain platform. We analyze the benefits of the system and measure the time overhead to show the feasibility of the system.

Collision Avoidance Using Omni Vision SLAM Based on Fisheye Image (어안 이미지 기반의 전방향 영상 SLAM을 이용한 충돌 회피)

  • Choi, Yun Won;Choi, Jeong Won;Im, Sung Gyu;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • This paper presents a novel collision avoidance technique for mobile robots based on omni-directional vision simultaneous localization and mapping (SLAM). This method estimates the avoidance path and speed of a robot from the location of an obstacle, which can be detected using the Lucas-Kanade Optical Flow in images obtained through fish-eye cameras mounted on the robots. The conventional methods suggest avoidance paths by constructing an arbitrary force field around the obstacle found in the complete map obtained through the SLAM. Robots can also avoid obstacles by using the speed command based on the robot modeling and curved movement path of the robot. The recent research has been improved by optimizing the algorithm for the actual robot. However, research related to a robot using omni-directional vision SLAM to acquire around information at once has been comparatively less studied. The robot with the proposed algorithm avoids obstacles according to the estimated avoidance path based on the map obtained through an omni-directional vision SLAM using a fisheye image, and returns to the original path. In particular, it avoids the obstacles with various speed and direction using acceleration components based on motion information obtained by analyzing around the obstacles. The experimental results confirm the reliability of an avoidance algorithm through comparison between position obtained by the proposed algorithm and the real position collected while avoiding the obstacles.

Localization using Ego Motion based on Fisheye Warping Image (어안 워핑 이미지 기반의 Ego motion을 이용한 위치 인식 알고리즘)

  • Choi, Yun Won;Choi, Kyung Sik;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2014
  • This paper proposes a novel localization algorithm based on ego-motion which used Lucas-Kanade Optical Flow and warping image obtained through fish-eye lenses mounted on the robots. The omnidirectional image sensor is a desirable sensor for real-time view-based recognition of a robot because the all information around the robot can be obtained simultaneously. The preprocessing (distortion correction, image merge, etc.) of the omnidirectional image which obtained by camera using reflect in mirror or by connection of multiple camera images is essential because it is difficult to obtain information from the original image. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we extract motion vectors using Lucas-Kanade Optical Flow in preprocessed image. Third, we estimate the robot position and angle using ego-motion method which used direction of vector and vanishing point obtained by RANSAC. We confirmed the reliability of localization algorithm using ego-motion based on fisheye warping image through comparison between results (position and angle) of the experiment obtained using the proposed algorithm and results of the experiment measured from Global Vision Localization System.

Economic application of structural health monitoring and internet of things in efficiency of building information modeling

  • Cao, Yan;Miraba, Sepideh;Rafiei, Shervin;Ghabussi, Aria;Bokaei, Fateme;Baharom, Shahrizan;Haramipour, Pedram;Assilzadeh, Hamid
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.559-573
    • /
    • 2020
  • One of the powerful data management tools is Building Information Modeling (BIM) which operates through obtaining, recalling, sharing, sorting and sorting data and supplying a digital environment of them. Employing SHM, a BIM in monitoring systems, would be an efficient method to address their data management problems and consequently optimize the economic aspects of buildings. The recording of SHM data is an effective way for engineers, facility managers and owners which make the BIM dynamic through the provision of updated information regarding the occurring state and health of different sections of the building. On the other hand, digital transformation is a continuous challenge in construction. In a cloud-based BIM platform, environmental and localization data are integrated which shape the Internet-of-Things (IoT) method. In order to improve work productivity, living comfort, and entertainment, the IoT has been growingly utilized in several products (such as wearables, smart homes). However, investigations confronting the integration of these two technologies (BIM and IoT) remain inadequate and solely focus upon the automatic transmission of sensor information to BIM models. Therefore, in this composition, the use of BIM based on SHM and IOT is reviewed and the economic application is considered.

Development of IoT Home Gateway Environment based on ACOME using Open Source Hardware (오픈소스 하드웨어를 활용한 ACOME 기반의 IoT 홈 게이트웨이 환경 개발)

  • Kim, Seong-Min;Choi, Hoan-Suk;Rhee, Woo-Seop
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.296-304
    • /
    • 2016
  • Recently in domestic market, the telecommunication and appliance companies actively provide IoT home service through their dedicated smart device and communication network. But because their service should use only their own devices and be payed by monthly, it does not satisfy user's needs. So, users want device and service environment that can be easily configured according to user needs. Therefore, in this paper, we propose IoT home service environment architecture and ACOME(Auto-Configuration of MQTT and REST) mechanism. The proposed architecture consists of IoT platform and IoT home gateway. And the ACOME provides the automatic registration using DPWS function and interface construction using MQTT. This implements as a library for open-source hardware such as Arduino that is easy to get on the market. So the user easy to make own IoT device. Finally, we provide performance evaluation about service and device discovery between ACOME and DPWS.