• Title/Summary/Keyword: Automatic Measurement System

Search Result 611, Processing Time 0.024 seconds

Design and Development of Carbon Emission Monitoring System in Sejong City, Korea (세종시 탄소배출 모니터링시스템(CEMS)의 설계)

  • Leem, Yountaik
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.482-493
    • /
    • 2014
  • Many kinds of carbon emission monitoring systems or integrated systems have been developed so far. However, despite of the development of related techniques, they tend to be lack of statistic processing functions for feedback and policy-making data for users. In this study, a new CEMS (Carbon Emission Monitoring System) has been suggested and implemented in Sejong City, Korea. This system adapted automatic remote reading system from the site management agency as data hub to collect the electricity, gas and water usage of each household. The CEMS is consisted of 6 parts; carbon emission measurement, carbon emission standard setup and management, statistic analysis and the incentives. CEMS is distinguished with other systems for its UIs for users and the administrators. Also, data sharing with urban information system(UIS) of local government to produce information for users and policy-makers. This system makes it possible to investigate the change of energy consumption patterns, especially depending on the family structure and the housing characteristics. Furthermore, analyzing their correlation with carbon emission, it is expected to provide basic data used to establish urban environmental policies.

Automatic Noise Removal and Peak Detection Algorithm for ECG Measured from Capacitively Coupled Electrodes Included within a Cloth Mattress Pad (침대 패드 형태의 용량성 전극에서 측정된 심전도 신호를 처리하기 위한 자동 잡음 제거 및 피크 검출 알고리즘)

  • Lee, Won Kyu;Lee, Hong Ji;Yoon, Hee Nam;Chung, Gih Sung;Park, Kwang Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.87-94
    • /
    • 2014
  • Recent technological advances have increased interest in personal health monitoring. Electrocardiogram(ECG) monitoring is a basic healthcare activity and can provide decisive information regarding cardiovascular system status. In this study, we developed a capacitive ECG measurement system that can be included within a cloth mattress pad. The device permits ECG data to be obtained during sleep by using capacitive electrodes. However, it is difficult to detect R-wave peaks automatically because signals obtained from the system can include a high level of noise from various sources. Because R-peak detection is important in ECG applications, we developed an algorithm that can reduce noise and improve detection accuracy under noisy conditions. Algorithm reliability was evaluated by determining its sensitivity(Se), positive predictivity(+P), and error rate(Er) by using data from the MIT-BIH Polysomnographic Database and from our capacitive ECG system. The results showed that Se = 99.75%, +P = 99.77%, and Er = 0.47% for MIT-BIH Polysomnographic Database while Se = 96.47%, +P = 99.32%, and Er = 4.34% for our capacitive ECG system. Based on those results, we conclude that our R-peak detection method is capable of providing useful ECG information, even under noisy signal conditions.

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a system for monitoring air pollutants such as fine dust using an unmanned aerial vehicle capable of autonomous navigation. The existing air quality management system used a method of collecting information through a fixed sensor box or through a measurement sensor of a drone using a control device. This has disadvantages in that additional procedures for data collection and transmission must be performed in a limited space and for monitoring. In this paper, to overcome this problem, a GPS module for location information and a PMS7003 module for fine dust measurement are embedded in an unmanned aerial vehicle capable of autonomous navigation through flight information designation, and the collected information is stored in the SD module, and after the flight is completed, press the transmit button. It configures a system of one-stop structure that is stored in a remote database through a smartphone app connected via Bluetooth. In addition, an HTML5-based web monitoring page for real-time monitoring is configured and provided to interested users. The results of this study can be utilized in an environmental monitoring system through an unmanned aerial vehicle, and in the future, various pollutants measuring sensors such as sulfur dioxide and carbon dioxide will be added to develop it into a total environmental control system.

A Method for Slow Component Velocity Measurement of Nystagmus Eye Movements using RLSM (RLSM을 이용한 안구운동의 저속도 측정방법에 대한 연구)

  • 김규겸;고종선;박병림
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.546-553
    • /
    • 2002
  • A control of the body posture and movement is maintained by the vestibular system, vision, and proprioceptors. Especially, vestibular system has a very important function that controls the eye movement through vestibuloocular reflex and contraction of skeletal muscles through vestibulospinal reflex. However, postural disturbance caused by loss of vestibular function results in nausea, vomiting, vertigo and loss of craving for life. Lose of vestibular function leads to abnormal reflex of eye movements named nystagmus. Analysis of the nystagmus is needed to diagnose the vertigo, which is performed by means of electrooculography(EOG). The purpose of this study is to develop a computerized system for data processing and an algorithm for the automatic evaluation of the slow component velocity(SCV) of nystagmus induced by optokinetic(OKN) stimulation system. A new algorithm using recursive least square method(RLSM) to detect SCV of nystagmus is suggested in this paper. This method allows a fast and precise evaluation of the nystagmus, through artifact rejection techniques. The results are depicted in this paper.

Development of concentration measurement system in online education based on OpenCV (온라인 교육을 위한 OpenCV 기반 집중도 측정 시스템 개발)

  • Yim, Dae-Geun;Koh, Kyu Han;Jo, Jaechoon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.195-201
    • /
    • 2020
  • There have been many developments and innovations in the educational environments in line with the rapidly evolving information age. E-Learning is a representative example of this rapid evolution. However, E-Learning is challenging to maintain students' concentration because of the low engagement level and limited interactions between instructors and students. Additionally, instructors have limitations in identifying learners' concentration. This paper proposes a system that can measure E-learning users' concentration levels by detecting the users' eyelid movement and the top of the head. The system recognizes the eyelid and the top of the head and measures the learners' concentration level. Detection of the eyelid and the top of the head triggers an event to assess the learners' concentration level based on the users' response. After this process, the system provides a normalized concentration score to the instructor. Experiments with experimental groups and control groups were conducted to verify and validate the system, and the concentration score showed more than 90% accuracy.

Laver(Kim) Thickness Measurement and Control System Design (해태(김)두께측정 및 조절 장치 설계)

  • Lee, Bae-Kyu;Choi, Young-Il;Kim, Jung-Hwa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.226-233
    • /
    • 2013
  • In this study, In Laver's automatic drying device, laver thickness measurement and control devices that are associated with. Disconnect the water and steam, after put a certain amount of the mixture(water and laver) in the mold. In process, Laver of the size and thickness (weight) to determine, constant light source to detect and image LED Lamp occur Vision Sensor (Camera) prepare, then the values of these state of the image is transmitted in real time embedded computers. Built-in measurement and control with the purpose of the application of each of the channels separately provided measurements are displayed on a monitor, And servo signals sent to each of the channels and it become so set function should be. In this paper, the laver drying device, prior to the laver thickness measurement and control devices that rely on the experience of existing workers directly laver manually adjust the thickness of the lever, but the lever by each channel relative to the actuator by installing was to improve the quality. In addition, The effect of productivity gains and labor savings are.

INLINE NEAR INFRARED (NIR) SPECTROSCOPY FOR PROCESS CONTROL IN POLYMER EXTRUSION

  • Rohe, Thomas;Koelle, Sabine;Becker, Wolfgang;Eisenreich, Norbert;Eyerer, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1082-1082
    • /
    • 2001
  • Extrusion is one of the most important processes in polymer industry. The characterization of the polymer melt during processing will improve this process noticeably, One possibility of characterizing the actual processed polymer melt is the inline near infrared (NIR) spectroscopy, With this method several polymer properties can be observed during processing, e.g. composition, moisture ormechanical properties of the melt. For this purpose probes for transmission and reflection measurements have been developed, withstanding the high temperatures and pressures appearing during extrusion process (tested up to 300$^{\circ}C$ and 10 ㎫). For the transmission system an optical bypass was developed to eliminate disturbing spectral influences and hence increase the long term stability, which is the prerequisite for an industrial application. Measurements in transmission and reflection produced comparable results (or blending processes, where the prediction error was less than 1%. An optimum RMSEP of only 0.24% was found for preprocessed polymer blends measured in transmission on a laboratory extruder. A transflection measurement allowed for the first time the recording of relevant NIR-spectra in the screw area of an extruder. The application to a (PE+PP) blending process delivered promising results. This new measurement mode allows the observation of the ongoing processes within the screw area, which is of maximum Interest for reactive extrusion processes. Due to economic reasons the calibration transfer between different extrusion systems is also of high importance. Investigations on simulated and real-world spectra showed that a calibration transfer is possible. A new method alternatively to the well-known direct standardization procedures was developed, which is based on an automatic data pretreatment. This procedure delivers comparable results for the calibration transfer. Overall this paper presents concepts, components and algorithms for the inline near infrared (NIR) spectroscopy for polymer extrusion, which allows the use of it in a real industrial extrusion process.

  • PDF

Establishment of Information Interface Technology between Hull and Outfitting Designs (선체설계와 의장설계간의 정보인터페이스 기법 연구)

  • Choi, Yeong-Tae;Suh, Heung-Won;Lee, Soon-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.458-465
    • /
    • 2013
  • Ship design engineering refers to the development and design of shipbuilding architectures in a drawing which reflects all relevant manufacturing processes. This paper provides analysis methods for model-information interfaces between hull structure design and outfitting design, and a technical application for manufacturing phases reflecting the pipe support pad and angle item automatically. The existing information procedure of pipe support pad and angle system processes information using drawing without model specification. Outfitting design team directly distributes drawings to the shop floor then manual-based marking and installation work are conducted refer to the distributed drawings. As a result, this process has become time consuming and causes problems in the productivity and quality improvement due to the rework caused by omitted or incorrect marking. The pipe support pad and angle marking is a method that automatically updates model information to hull structure design using sets of data that analyse the generated model in outfitting design processes. Therefore, this approach provides an efficient solution through design references without manual activities such as a reflection of hull structure design, cutting process, numerical control work, and dimension measurement and marking. The conversion of a method from the existing procedure based on manual marking to the reflective and automatic approach would have enabled to proceed installation work without manual activities for the measurement. Therefore, this research study proposes an efficient approach using pre-data analysis of model information interfaces between design and manufacturing phases to improve productivity during construction for shipbuilding.

Development of Automatic Measurement and Control Method based on Single Chip Microcomputer for Tackjoo Fermentation (Single Chip Microcomputer를 이용한 탁주발효(濁酒醱酵)의 자동계측(自動計測)과 제어방법(制御方法)의 개발(開發))

  • Kim, Kyung-Man;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.391-394
    • /
    • 1993
  • For the automation of Tackjoo fermentation, a sensor measurable gas production during brewing and a controller were built. The performance tests were carried out at 10 litter Tackjoo fermentor, The sensor was consisted of a transparent acryl cell for bubble formation and photo-interrupter for the detection of bubbles of 0.018ml size. The fermentation controller was fabricated with a single chip microcomputer (MC68705R3) and provided with both the monitoring module of temperature measurement and the valve controling device for the cooling water circulation in coil type heat exchanger. The operation programs were developed and systemized in ROM. With this computer system, the gas production amount and rate were acquired during the Tackjoo fermentation. The fermentation curve based on the gas production rate showed a good agreement with that of alcohol concentration. The maximum rate of gas production was found after 24 hr at $30^{\circ}C$. The correlation equation between the gas production and alcohol concentration was established and used as the control algorithm of the fermentation.

  • PDF

A Study for measurement method of P-wave duration in Paroxysmal Atrial Fibrillation(PAF) subjects (발작성 심방세동 환자의 P파 간격 측정 방법에 관한 연구)

  • Lee, J.Y.;Yeo, H.S.;Han, W.T.;Kim, I.Y.;Lee, B.C.;Kim, J.S.;Mi, J.S.;Seo, J.D.;Lee, W.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.181-182
    • /
    • 1998
  • In previous study for correlation between P-wave Signal Averaged Electrocardiography (SAECG) and Paroxysmal Atrial Fibrillation (PAF) subjects, we showed that the duration of P-wave in subjects is longer than in controls. In this respect, the P-wave SAECG is a new method proving to be an accurate and independent noninvasive marker for the risk of PAF. To prove this suggestion, accurate detection and alignment of P-wave are indispensible. In previous study, we measured P-wave duration by manual. So it was not accurate and consistent. To measure the P-wave duration accurately and automatically, we have developed an automatic algorithm for P-wave duration measurement. We showed that the duration of P- wave in the subjects is longer than in controls with this algorithm.

  • PDF