• Title/Summary/Keyword: Automatic Machine Learning

Search Result 298, Processing Time 0.022 seconds

Building Topic Hierarchy of e-Documents using Text Mining Technology

  • Kim, Han-Joon
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.294-301
    • /
    • 2004
  • ·Text-mining approach to e-documents organization based on topic hierarchy - Machine-Learning & information Theory-based ㆍ 'Category(topic) discovery' problem → document bundle-based user-constraint document clustering ㆍ 'Automatic categorization' problem → Accelerated EM with CU-based active learning → 'Hierarchy Construction' problem → Unsupervised learning of category subsumption relation

  • PDF

Automated infographic recommendation system based on machine learning (기계학습 기반의 인포그래픽 자동 추천 시스템)

  • Kim, Hyeong-Gyun;Lee, Sang-hee
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • In this paper, a machine learning-based automatic infographic recommendation system is proposed to improve the existing infographic production method. This system consists of a part that machine learning multiple infographic images and a part that automatically recommends infographics with artificial intelligence only by inputting basic data from the user. The recommended infographics are provided in the form of a library, and additional data can be input by drag & drop method. In addition, the infographic image is designed to be dynamically adjusted according to the size of the input data. As a result of analyzing the machine learning-based automatic infographic recommendation process, the matching success rate for layout and keyword was very high, and the matching success rate for type was rather low. In the future, a study to improve the matching success rate for the image type for each part of the infographic will be needed.

Automatic Post Editing Research (기계번역 사후교정(Automatic Post Editing) 연구)

  • Park, Chan-Jun;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • Machine translation refers to a system where a computer translates a source sentence into a target sentence. There are various subfields of machine translation. APE (Automatic Post Editing) is a subfield of machine translation that produces better translations by editing the output of machine translation systems. In other words, it means the process of correcting errors included in the translations generated by the machine translation system to make proofreading. Rather than changing the machine translation model, this is a research field to improve the translation quality by correcting the result sentence of the machine translation system. Since 2015, APE has been selected for the WMT Shaed Task. and the performance evaluation uses TER (Translation Error Rate). Due to this, various studies on the APE model have been published recently, and this paper deals with the latest research trends in the field of APE.

A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot (벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.449-456
    • /
    • 2019
  • This paper is a study on the construction of a wall-climbing mobile robot using vacuum suction and wheel-type movement, and a comparison of the performance of an automatic wall crack detection algorithm based on machine learning that is suitable for such an embedded environment. In the embedded system environment, we compared performance by applying recently developed learning methods such as YOLO for object learning, and compared performance with existing edge detection algorithms. Finally, in this study, we selected the optimal machine learning method suitable for the embedded environment and good for extracting the crack features, and compared performance with the existing methods and presented its superiority. In addition, intelligent problem - solving function that transmits the image and location information of the detected crack to the manager device is constructed.

A study on improving the performance of the machine-learning based automatic music transcription model by utilizing pitch number information (음고 개수 정보 활용을 통한 기계학습 기반 자동악보전사 모델의 성능 개선 연구)

  • Daeho Lee;Seokjin Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.207-213
    • /
    • 2024
  • In this paper, we study how to improve the performance of a machine learning-based automatic music transcription model by adding musical information to the input data. Where, the added musical information is information on the number of pitches that occur in each time frame, and which is obtained by counting the number of notes activated in the answer sheet. The obtained information on the number of pitches was used by concatenating it to the log mel-spectrogram, which is the input of the existing model. In this study, we use the automatic music transcription model included the four types of block predicting four types of musical information, we demonstrate that a simple method of adding pitch number information corresponding to the music information to be predicted by each block to the existing input was helpful in training the model. In order to evaluate the performance improvement proceed with an experiment using MIDI Aligned Piano Sounds (MAPS) data, as a result, when using all pitch number information, performance improvement was confirmed by 9.7 % in frame-based F1 score and 21.8 % in note-based F1 score including offset.

A Study on automatic assignment of descriptors using machine learning (기계학습을 통한 디스크립터 자동부여에 관한 연구)

  • Kim, Pan-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.1 s.59
    • /
    • pp.279-299
    • /
    • 2006
  • This study utilizes various approaches of machine learning in the process of automatically assigning descriptors to journal articles. The effectiveness of feature selection and the size of training set were examined, after selecting core journals in the field of information science and organizing test collection from the articles of the past 11 years. Regarding feature selection, after reducing the feature set using $x^2$ statistics(CHI) and criteria that prefer high-frequency features(COS, GSS, JAC), the trained Support Vector Machines(SVM) performed the best. With respect to the size of the training set, it significantly influenced the performance of Support Vector Machines(SVM) and Voted Perceptron(VTP). However, it had little effect on Naive Bayes(NB).

A Study on the Application of Measurement Data Using Machine Learning Regression Models

  • Yun-Seok Seo;Young-Gon Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2023
  • The automotive industry is undergoing a paradigm shift due to the convergence of IT and rapid digital transformation. Various components, including embedded structures and systems with complex architectures that incorporate IC semiconductors, are being integrated and modularized. As a result, there has been a significant increase in vehicle defects, raising expectations for the quality of automotive parts. As more and more data is being accumulated, there is an active effort to go beyond traditional reliability analysis methods and apply machine learning models based on the accumulated big data. However, there are still not many cases where machine learning is used in product development to identify factors of defects in performance and durability of products and incorporate feedback into the design to improve product quality. In this paper, we applied a prediction algorithm to the defects of automotive door devices equipped with automatic responsive sensors, which are commonly installed in recent electric and hydrogen vehicles. To do so, we selected test items, built a measurement emulation system for data acquisition, and conducted comparative evaluations by applying different machine learning algorithms to the measured data. The results in terms of R2 score were as follows: Ordinary multiple regression 0.96, Ridge regression 0.95, Lasso regression 0.89, Elastic regression 0.91.

Classifying Windows Executables using API-based Information and Machine Learning (API 정보와 기계학습을 통한 윈도우 실행파일 분류)

  • Cho, DaeHee;Lim, Kyeonghwan;Cho, Seong-je;Han, Sangchul;Hwang, Young-sup
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1325-1333
    • /
    • 2016
  • Software classification has several applications such as copyright infringement detection, malware classification, and software automatic categorization in software repositories. It can be also employed by software filtering systems to prevent the transmission of illegal software. If illegal software is identified by measuring software similarity in software filtering systems, the average number of comparisons can be reduced by shrinking the search space. In this study, we focused on the classification of Windows executables using API call information and machine learning. We evaluated the classification performance of machine learning-based classifier according to the refinement method for API information and machine learning algorithm. The results showed that the classification success rate of SVM (Support Vector Machine) with PolyKernel was higher than other algorithms. Since the API call information can be extracted from binary executables and machine learning-based classifier can identify tampered executables, API call information and machine learning-based software classifiers are suitable for software filtering systems.

A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning (딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구)

  • Jeong, Minuk;Kim, Hyeonji;Gwak, Chaewon;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Language- Independent Sentence Boundary Detection with Automatic Feature Selection

  • Lee, Do-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1297-1304
    • /
    • 2008
  • This paper proposes a machine learning approach for language-independent sentence boundary detection. The proposed method requires no heuristic rules and language-specific features, such as part-of-speech information, a list of abbreviations or proper names. With only the language-independent features, we perform experiments on not only an inflectional language but also an agglutinative language, having fairly different characteristics (in this paper, English and Korean, respectively). In addition, we obtain good performances in both languages. We have also experimented with the methods under a wide range of experimental conditions, especially for the selection of useful features.

  • PDF