• 제목/요약/키워드: Automatic Machine Learning

Search Result 298, Processing Time 0.024 seconds

Analysis of Automatic Machine Learning Solution Trends of Startups

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.297-304
    • /
    • 2020
  • Recently, open source automatic machine learning solutions have been applied in many fields. To apply open source automated machine learning to real world problems, you need to write code with expertise in machine learning. Writing code without machine learning knowledge is challenging. To solve this problem, the automatic machine learning solutions provided by startups are made easy to use with a clean user interface. In this paper, we review automatic machine learning solutions of startups.

Study on Automatic Bug Triage using Deep Learning (딥 러닝을 이용한 버그 담당자 자동 배정 연구)

  • Lee, Sun-Ro;Kim, Hye-Min;Lee, Chan-Gun;Lee, Ki-Seong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1156-1164
    • /
    • 2017
  • Existing studies on automatic bug triage were mostly used the method of designing the prediction system based on the machine learning algorithm. Therefore, it can be said that applying a high-performance machine learning model is the core of the performance of the automatic bug triage system. In the related research, machine learning models that have high performance are mainly used, such as SVM and Naïve Bayes. In this paper, we apply Deep Learning, which has recently shown good performance in the field of machine learning, to automatic bug triage and evaluate its performance. Experimental results show that the Deep Learning based Bug Triage system achieves 48% accuracy in active developer experiments, un improvement of up to 69% over than conventional machine learning techniques.

Income prediction of apple and pear farmers in Chungnam area by automatic machine learning with H2O.AI

  • Hyundong, Jang;Sounghun, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.619-627
    • /
    • 2022
  • In Korea, apples and pears are among the most important agricultural products to farmers who seek to earn money as income. Generally, farmers make decisions at various stages to maximize their income but they do not always know exactly which option will be the best one. Many previous studies were conducted to solve this problem by predicting farmers' income structure, but researchers are still exploring better approaches. Currently, machine learning technology is gaining attention as one of the new approaches for farmers' income prediction. The machine learning technique is a methodology using an algorithm that can learn independently through data. As the level of computer science develops, the performance of machine learning techniques is also improving. The purpose of this study is to predict the income structure of apples and pears using the automatic machine learning solution H2O.AI and to present some implications for apple and pear farmers. The automatic machine learning solution H2O.AI can save time and effort compared to the conventional machine learning techniques such as scikit-learn, because it works automatically to find the best solution. As a result of this research, the following findings are obtained. First, apple farmers should increase their gross income to maximize their income, instead of reducing the cost of growing apples. In particular, apple farmers mainly have to increase production in order to obtain more gross income. As a second-best option, apple farmers should decrease labor and other costs. Second, pear farmers also should increase their gross income to maximize their income but they have to increase the price of pears rather than increasing the production of pears. As a second-best option, pear farmers can decrease labor and other costs.

Current Status of Automatic Fish Measurement (어류의 외부형질 측정 자동화 개발 현황)

  • Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • The measurement of morphological features is essential in aquaculture, fish industry and the management of fishery resources. The measurement of fish requires a large investment of manpower and time. To save time and labor for fish measurement, automated and reliable measurement methods have been developed. Automation was achieved by applying computer vision and machine learning techniques. Recently, machine learning methods based on deep learning have been used for most automatic fish measurement studies. Here, we review the current status of automatic fish measurement with traditional computer vision methods and deep learning-based methods.

Combining Machine Learning Techniques with Terrestrial Laser Scanning for Automatic Building Material Recognition

  • Yuan, Liang;Guo, Jingjing;Wang, Qian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.361-370
    • /
    • 2020
  • Automatic building material recognition has been a popular research interest over the past decade because it is useful for construction management and facility management. Currently, the extensively used methods for automatic material recognition are mainly based on 2D images. A terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that contains not only the visual features of building materials but also other attributes such as material reflectance and surface roughness. With more characteristics provided, laser scan data have the potential to improve the accuracy of building material recognition. Therefore, this research aims to develop a TLS-based building material recognition method by combining machine learning techniques. The developed method uses material reflectance, HSV colour values, and surface roughness as the features for material recognition. A database containing the laser scan data of common building materials was created and used for model training and validation with machine learning techniques. Different machine learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 96.5%, which demonstrated the feasibility of the developed method.

  • PDF

Automatic and objective gradation of 114 183 terrorist attacks using a machine learning approach

  • Chi, Wanle;Du, Yihong
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.694-701
    • /
    • 2021
  • Catastrophic events cause casualties, damage property, and lead to huge social impacts. To build common standards and facilitate international communications regarding disasters, the relevant authorities in social management rank them in subjectively imposed terms such as direct economic losses and loss of life. Terrorist attacks involving uncertain human factors, which are roughly graded based on the rule of property damage, are even more difficult to interpret and assess. In this paper, we collected 114 183 open-source records of terrorist attacks and used a machine learning method to grade them synthetically in an automatic and objective way. No subjective claims or personal preferences were involved in the grading, and each derived common factor contains the comprehensive and rich information of many variables. Our work presents a new automatic ranking approach and is suitable for a broad range of gradation problems. Furthermore, we can use this model to grade all such attacks globally and visualize them to provide new insights.

A Study on Automatic Classification of Record Text Using Machine Learning (기계학습을 이용한 기록 텍스트 자동분류 사례 연구)

  • Kim, Hae Chan Sol;An, Dae Jin;Yim, Jin Hee;Rieh, Hae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.4
    • /
    • pp.321-344
    • /
    • 2017
  • Research on automatic classification of records and documents has been conducted for a long time. Recently, artificial intelligence technology has been developed to combine machine learning and deep learning. In this study, we first looked at the process of automatic classification of documents and learning method of artificial intelligence. We also discussed the necessity of applying artificial intelligence technology to records management using various cases of machine learning, especially supervised methods. And we conducted a test to automatically classify the public records of the Seoul metropolitan government into BRM using ETRI's Exobrain, based on supervised machine learning method. Through this, we have drawn up issues to be considered in each step in records management agencies to automatically classify the records into various classification schemes.

Automatic categorization of chloride migration into concrete modified with CFBC ash

  • Marks, Maria;Jozwiak-Niedzwiedzka, Daria;Glinicki, Michal A.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this investigation was to develop rules for automatic categorization of concrete quality using selected artificial intelligence methods based on machine learning. The range of tested materials included concrete containing a new waste material - solid residue from coal combustion in fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed experimental tests on obtained chloride migration provided data for learning and testing of rules discovered by machine learning techniques. It has been found that machine learning is a tool which can be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified with CFBC fly ash as materials of good and acceptable resistance to chloride penetration.

A Strategy for Constructing the Thesaurus of Traditional East Asian Medicine (TEAM) Terms With Machine Learning (기계 학습을 이용한 한의학 용어 유의어 사전 구축 방안)

  • Oh, Junho
    • Journal of Korean Medical classics
    • /
    • v.35 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • Objectives : We propose a method for constructing a thesaurus of Traditional East Asian Medicine terminology using machine learning. Methods : We presented a method of combining the 'Automatic Step' which uses machine learning and the 'Manual Step' which is the operator's review process. By applying this method to the sample data, we constructed a simple thesaurus and examined the results. Results : Out of the 17,874 sample data, a thesaurus was constructed targeting 749 terminologies. 200 candidate groups were derived in the automatic step, from which 79 synonym groups were derived in the manual step. Conclusions : The proposed method in this study will likely save resources required in constructing a thesaurus.