• Title/Summary/Keyword: Automatic Launcher

Search Result 5, Processing Time 0.019 seconds

The Effect on the Launching Stability due to the Initial Missile Detent Force (발사시 초기 구속력이 유도탄 발사안정에 미치는 영향)

  • 심우전;임범수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1017-1022
    • /
    • 1996
  • This paper presents results of dynamic analysis of the missile initial motion arising from the missile detent force. Using ADAMS (Automatic Dynamic Analysis of Mechanical System) software, a non-linear 46-DOF (Degree of Freedom) model is developed for the launcher system including missile and launch tube contact problem. From the dynamic analysis, it is found that initial angular velocity of the missile increases when the missile detent force increases (more than 18 g) and also rocket exhaust plume is taken into account. To achieve the missile launching s ability, it needs to reduce the missile initial detent force and exhaust plume area of the launcher. Results of the dynamic analysis on the system natural frequency agree well with those obtained from experimental modal tests. The overall results suggest that the proposed method is a useful tool for prediction of initial missile stability as well as d :sign of the missile launcher system.

  • PDF

The Effect on Launching Stability Due to the Initial Missile Detent Force (유도탄의 초기 구속력이 발사안정에 미치는 영향)

  • 심우전;임범수;이우진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.22-29
    • /
    • 1997
  • This paper presents results on dynamic analysis of the missile initial motion arising from the missile detent force. Using ADAMS (Automatic Dynamic Analysis of Mechanical Syatem) software, a non- linear46-DOF (Degree of Freedom) model is developed for the launcher system including missile and lunch tube contact problem. From the dynamic analysis, it is found that initial angular velocity of the missile incre- ases when the missile detent force increases and also when rocket exhaust plume is taken into account. To achieve the missile launching stability, it needs to reduce the missile initial detent force and exhaust plume area of the lancher. Results of the dynamic analysis on the system natural frequency agree well with those obtained from experimental modal tests. The overall results suggest that the proposed method is a useful tool for prediction of initial missile stability as well as design of the missile launcher system.

  • PDF

A Mathematical Analysis of Automatic Balanced Placement of Icons in A Smartphone Launcher (스마트폰 런처에서 아이콘 자동 균형 배치의 수학적 분석)

  • Son, Kyung A;Eun, Seongbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1457-1462
    • /
    • 2020
  • There are dozens of applications on the smartphone. The service application that manages the loading, deletion, and deployment of these applications is called a smartphone launcher, and various launchers are used. Some of the existing launchers provide a function to automatically place icons by analyzing user application usage patterns. In this paper, we present a method of automatically arranging icons so that the icons are balanced on the smartphone screen. The usefulness of our method is illustrated by some exaples. In this case, it is proved that in an m × n screen layout with a height of m and a width of n, if n is an odd number, the entire screen can always be arranged in a balanced manner regardless of the n value by mathematical induction method.

Study on a Noble Methodology for the Automatic Decision of Optimal Launch Angle Sequence under Multi-Target Engagement (다수 표적 연속교전 상황에서의 최적 발사각 Sequence 결정 개념 연구)

  • Ryu, Sunmee
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.133-146
    • /
    • 2016
  • To engage multiple missiles in single launcher against multiple targets, launcher system has to operate for optimized launch angle to each target sequentially. If the launch angle sequence is simply defined according to the target assignment order only, overall engagement time would be increased, and even in some engagement scenarios, it could be possible to miss some moving targets being out of proper engagement area. Therefore, the study on methodology for a real-time decision of optimized launch angle sequence is necessary. In this paper, the automatic decision model of launch angle sequence was suggested to minimize total engagement time by analyzing the simulation results of all engagement sequence set for multiple moving target scenario. Performance of proposed methodology for decision of optimal launch angle sequence was verified by comparing with the optimal or suboptimal sequence obtained from simulation results.

A study on the behaviour of axisymmetric outer tube and inner movable part(case) under pressure and thermal load (열하중 및 내압을 받는 축대칭 튜브와 내부 운동체의 거동해석 연구)

  • Kim, I.W.;Lee, S.B.;Park, Y.J.;Lee, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.114-125
    • /
    • 1993
  • Thermoelastoplastic analysis of a typical device consisting of fixed tube and movable case having an inital clearance in between, which is subjected to pressure and thermal load, has been carried out to examine the cause of malfunction mainly at high temperature condition, and to improve the design. Stresses, deformed shape, interface state and their effects on normal function of case are discussed by using finite element method. The extraction energy can be remarkably reduced by changing the configuration of tube from the present design (Parallel type) to the improved design (Tapered type). This effect has been proved by sustained cyclic function test.

  • PDF