• Title/Summary/Keyword: Automatic Image Classification

Search Result 225, Processing Time 0.028 seconds

Study on Automated Land Cover Update Using Hyperspectral Satellite Image(EO-1 Hyperion) (초분광 위성영상 Hyperion을 활용한 토지피복지도 자동갱신 연구)

  • Jang, Se-Jin;Chae, Ok-Sam;Lee, Ho-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.383-387
    • /
    • 2007
  • The improved accuracy of the Land Cover/Land Use Map constructed using Hyperspectal Satellite Image and the possibility of real time classification of Land Use using optimal Band Selective Factor enable the change detection from automatic classification using the existed Land Cover/Land Use Map and the newly acquired Hyperspectral Satellite Image. In this study, the effective analysis techniques for automatic generation of training regions, automatic classification and automatic change detection are proposed to minimize the expert's interpretation for automatic update of the Land Cover/Land Use Map. The proposed algorithms performed successfully the automatic Land Cover/Land Use Map construction, automatic change detection and automatic update on the image which contained the changed region. It would increase applicability in actual services. Also, it would be expected to present the effective methods of constructing national land monitoring system.

  • PDF

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Automatic Classification of Drone Images Using Deep Learning and SVM with Multiple Grid Sizes

  • Kim, Sun Woong;Kang, Min Soo;Song, Junyoung;Park, Wan Yong;Eo, Yang Dam;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.407-414
    • /
    • 2020
  • SVM (Support vector machine) analysis was performed after applying a deep learning technique based on an Inception-based model (GoogLeNet). The accuracy of automatic image classification was analyzed using an SVM with multiple virtual grid sizes. Six classes were selected from a standard land cover map. Cars were added as a separate item to increase the classification accuracy of roads. The virtual grid size was 2-5 m for natural areas, 5-10 m for traffic areas, and 10-15 m for building areas, based on the size of items and the resolution of input images. The results demonstrate that automatic classification accuracy can be increased by adopting an integrated approach that utilizes weighted virtual grid sizes for different classes.

Automatic Classification Method for Time-Series Image Data using Reference Map (Reference Map을 이용한 시계열 image data의 자동분류법)

  • Hong, Sun-Pyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.58-65
    • /
    • 1997
  • A new automatic classification method with high and stable accuracy for time-series image data is presented in this paper. This method is based on prior condition that a classified map of the target area already exists, or at least one of the time-series image data had been classified. The classified map is used as a reference map to specify training areas of classification categories. The new automatic classification method consists of five steps, i.e., extraction of training data using reference map, detection of changed pixels based upon the homogeneity of training data, clustering of changed pixels, reconstruction of training data, and classification as like maximum likelihood classifier. In order to evaluate the performance of this method qualitatively, four time-series Landsat TM image data were classified by using this method and a conventional method which needs a skilled operator. As a results, we could get classified maps with high reliability and fast throughput, without a skilled operator.

  • PDF

Object oriented classification using Landsat images

  • Yoon, Geun-Won;Cho, Seong-Ik;Jeong, Soo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.204-206
    • /
    • 2003
  • In order to utilize remote sensed images effectively, a lot of image classification methods are suggested for many years. But, the accuracy of traditional methods based on pixel-based classification is not high in general. In this study, object oriented classification based on image segmentation is used to classify Landsat images. A necessary prerequisite for object oriented image classification is successful image segmentation. Object oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values , shape and texture. Landsat images are divided into urban, agriculture, forest, grassland, wetland, barren and water in sochon-gun, Chungcheongnam-do using object oriented classification algorithms in this paper. Preliminary results will help to perform an automatic image classification in the future.

  • PDF

Soft Sensor Design Using Image Analysis and its Industrial Applications Part 2. Automatic Quality Classification of Engineered Stone Countertops (화상분석을 이용한 소프트 센서의 설계와 산업응용사례 2. 인조대리석의 품질 자동 분류)

  • Ryu, Jun-Hyung;Liu, J. Jay
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.483-489
    • /
    • 2010
  • An image analysis-based soft sensor is designed and applied to automatic quality classification of product appearance with color-textural characteristics. In this work, multiresolutional multivariate image analysis (MR-MIA) is used in order to analyze product images with color as well as texture. Fisher's discriminant analysis (FDA) is also used as a supervised learning method for automatic classification. The use of FDA, one of latent variable methods, enables us not only to classify products appearance into distinct classes, but also to numerically and consistently estimate product appearance with continuous variations and to analyze characteristics of appearance. This approach is successfully applied to automatic quality classification of intermediate and final products in industrial manufacturing of engineered stone countertops.

Machine Learning Based Automatic Categorization Model for Text Lines in Invoice Documents

  • Shin, Hyun-Kyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1786-1797
    • /
    • 2010
  • Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.

Automatic Classification of SMD Packages using Neural Network (신경회로망을 이용한 SMD 패키지의 자동 분류)

  • Youn, SeungGeun;Lee, Youn Ae;Park, Tae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.276-282
    • /
    • 2015
  • This paper proposes a SMD (surface mounting device) classification method for the PCB assembly inspection machines. The package types of SMD components should be classified to create the job program of the inspection machine. In order to reduce the creation time of job program, we developed the automatic classification algorithm for the SMD packages. We identified the chip-type packages by color and edge distribution of the images. The input images are transformed into the HSI color model, and the binarized histroms are extracted for H and S spaces. Also the edges are extracted from the binarized image, and quantized histograms are obtained for horizontal and vertical direction. The neural network is then applied to classify the package types from the histogram inputs. The experimental results are presented to verify the usefulness of the proposed method.

Development of an Automatic Measuring Program for the Pennation Angle Using Ultrasonography Image (초음파 영상 깃각 자동 측정 프로그램 개발)

  • Kim, Jongsoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 2017
  • Purpose : The parameters used in architectural analysis are muscle thickness, fascicle length, pennation angle, etc. Pennation angle is an important muscle characteristic that plays a significant role in determining a fascicle's force contribution to movement. Ultrasonography has been widely used to obtain the image for measurement of a pennation angle since it is non-invasive and real-time. However, manual assessment in ultrasonographic images is time-consuming and subjective, making it difficult for using in muscle function analysis. Thus, in this study, I proposed an automatic method to extract the pennation angle from the ultrasonographic images of gastrocnemius muscle. Method : The ultrasonographic image obtained from 10 healthy participants's gastrocnemius muscle using for developed automatic measuring program. Automatic measuring program algorithm consists with preprocessing, line detection, line classification, and angle calculation. The resulting image was then used to detect the fascicles and aponeuroses for calculating the pennation angle with the consideration of their distribution in ultrasonographic image. Result : The proposed automatic measurement program showed the stable repeatability of pennation angle calculation. Conclusion : This study demonstrated that the proposed method was able to automatically measure the pennation angle of gastrocnemius, which made it possible to easily and reliably investigate pennation angle more.