DOI QR코드

DOI QR Code

Development of an Automatic Measuring Program for the Pennation Angle Using Ultrasonography Image

초음파 영상 깃각 자동 측정 프로그램 개발

  • Kim, Jongsoon (Dept. of Physical Therapy, College of Health Sciences, Catholic University of Pusan)
  • 김종순 (부산가톨릭대학교 보건과학대학 물리치료학과)
  • Received : 2017.02.02
  • Accepted : 2017.02.21
  • Published : 2017.03.31

Abstract

Purpose : The parameters used in architectural analysis are muscle thickness, fascicle length, pennation angle, etc. Pennation angle is an important muscle characteristic that plays a significant role in determining a fascicle's force contribution to movement. Ultrasonography has been widely used to obtain the image for measurement of a pennation angle since it is non-invasive and real-time. However, manual assessment in ultrasonographic images is time-consuming and subjective, making it difficult for using in muscle function analysis. Thus, in this study, I proposed an automatic method to extract the pennation angle from the ultrasonographic images of gastrocnemius muscle. Method : The ultrasonographic image obtained from 10 healthy participants's gastrocnemius muscle using for developed automatic measuring program. Automatic measuring program algorithm consists with preprocessing, line detection, line classification, and angle calculation. The resulting image was then used to detect the fascicles and aponeuroses for calculating the pennation angle with the consideration of their distribution in ultrasonographic image. Result : The proposed automatic measurement program showed the stable repeatability of pennation angle calculation. Conclusion : This study demonstrated that the proposed method was able to automatically measure the pennation angle of gastrocnemius, which made it possible to easily and reliably investigate pennation angle more.

Keywords

References

  1. Aggeloussis N, Giannakou E, Albracht K, et al(2010). Reproducibility of fascicle length and pennation angle of gastrocnemius medialis in human gait in vivo. Gait Posture, 31(1), 73-77. https://doi.org/10.1016/j.gaitpost.2009.08.249
  2. Benard MR, Becher JG, Harlaar J, et al(2009). Anatomical information is needed in ultrasound imaging of muscle to avoid potentially substantial errors in measurement of muscle geometry. Muscle Nerve, 39(5), 652-665. https://doi.org/10.1002/mus.21287
  3. Binzoni T, Bianchi S, Hanquinet S, et al(2001). Human gastrocnemius medialis pennation angle as a function of age: from newborn to the elderly. J Physiol Anthropol Appl Human Sci, 20(5), 293-298. https://doi.org/10.2114/jpa.20.293
  4. Blazevich AJ(2006). Effects of physical training and detraining, immobilisation, growth and aging on human fascicle geometry. Sports Med, 36(12), 1003-1017. https://doi.org/10.2165/00007256-200636120-00002
  5. Blazevich AJ, Cannavan D, Coleman DR, et al(2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol, 103(5), 1565-1575. https://doi.org/10.1152/japplphysiol.00578.2007
  6. Bolsterlee B, Gandevia SC, Herbert RD(2016). Effect of transducer orientation on errors in ultrasound image-based measurements of human medial gastrocnemius muscle fascicle length and pennation. PLoS One, 11(6), e0157273. https://doi.org/10.1371/journal.pone.0157273
  7. Duclay J, Martin A, Duclay A, et al(2009). Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve, 39(6), 819-827. https://doi.org/10.1002/mus.21297
  8. Fukunaga T, Kubo K, Kawakami Y, et al(2001). In vivo behaviour of human muscle tendon during walking. Proc Biol Sci, 268(1464), 229-233. https://doi.org/10.1098/rspb.2000.1361
  9. Fukunaga T, Kawakami Y, Kubo K, et al(2002). Muscle and tendon interaction during human movements. Exerc Sport Sci Rev, 30(3), 106-110. https://doi.org/10.1097/00003677-200207000-00003
  10. Gans C, de Vree F(1987). Functional bases of fiber length and angulation in muscle. J Morphol, 192(1), 63-85. https://doi.org/10.1002/jmor.1051920106
  11. Giannakou E, Aggeloussis N, Arampatzis A(2011). Reproducibility of gastrocnemius medialis muscle architecture during treadmill running. J Electromyogr Kinesiol, 21(6), 1081-1086. https://doi.org/10.1016/j.jelekin.2011.06.004
  12. Hodges PW, Pengel LH, Herbert RD, et al(2003). Measurement of muscle contraction with ultrasound imaging. Muscle Nerve, 27(6), 682-692. https://doi.org/10.1002/mus.10375
  13. Kawakami Y, Abe T, Fukunaga T(1993). Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol, 74(6), 2740-2744. https://doi.org/10.1152/jappl.1993.74.6.2740
  14. Kawakami Y, Abe T, Kuno SY, et al(1995). Training induced changes in muscle architecture and specific tension. Eur J Appl Physiol Occup Physiol, 72(1-2), 37-43. https://doi.org/10.1007/BF00964112
  15. Kwah LK, Pinto RZ, Diong J, et al(2013). Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. J Appl Physiol, 114(6), 761-769. https://doi.org/10.1152/japplphysiol.01430.2011
  16. Lee D, Li Z, Sohail QZ, et al(2015). A three-dimensional approach to pennation angle estimation for human skeletal muscle. Comput Methods Biomech Biomed Engin, 18(13), 1474-1484. https://doi.org/10.1080/10255842.2014.917294
  17. Lichtwark GA, Wilson AM(2006). Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol, 209(Pt 21), 4379-4388. https://doi.org/10.1242/jeb.02434
  18. Lichtwark GA, Bougoulias K, Wilson AM(2007). Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech, 40(1), 157-164. https://doi.org/10.1016/j.jbiomech.2005.10.035
  19. Lieber RL, Friden J(2000). Functional and clinical significance of skeletal muscle architecture. Muscle Nerve, 23(11), 1647-1666. https://doi.org/10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M
  20. Lieber RL, Ward SR(2011). Skeletal muscle design to meet functional demands. Philos Trans R Soc Lond B Biol Sci, 366(1570), 1466-1476. https://doi.org/10.1098/rstb.2010.0316
  21. Mademli L, Arampatzis A(2005). Behaviour of the human gastrocnemius muscle architecture during submaximal isometric fatigue. Eur J Appl Physiol, 94(5-6), 611-617. https://doi.org/10.1007/s00421-005-1366-8
  22. Maganaris CN, Baltzopoulos V, Sargeant AJ(1998). In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol, 512(Pt 2), 603-614. https://doi.org/10.1111/j.1469-7793.1998.603be.x
  23. Maganaris CN, Baltzopoulos V, Sargeant AJ(2002). Repeated contractions alter the geometry of human skeletal muscle. J Appl Physiol, 93(6), 2089-2094. https://doi.org/10.1152/japplphysiol.00604.2002
  24. Narici MV, Binzoni T, Hiltbrand E, et al(1996). In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol, 496(Pt 1), 287-297. https://doi.org/10.1113/jphysiol.1996.sp021685
  25. Narici M(1999). Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J Electromyogr Kinesiol, 9(2), 97-103. https://doi.org/10.1016/S1050-6411(98)00041-8
  26. Narici MV, Maganaris CN, Reeves ND, et al(2003). Effect of aging on human muscle architecture. J Appl Physiol, 95(6), 2229-2234. https://doi.org/10.1152/japplphysiol.00433.2003
  27. Narici MV, Maganaris CN(2006). Adaptability of elderly human muscles and tendons to increased loading. J Anat, 208(4), 433-443. https://doi.org/10.1111/j.1469-7580.2006.00548.x
  28. Narici MV, Maffulli N, Maganaris CN(2008). Ageing of human muscles and tendons. Disabil Rehabil, 30(20-22), 1548-1554. https://doi.org/10.1080/09638280701831058
  29. Pan Q, Chen Z, Wang Q, et al(2015). Automatic extraction of the pennation angle of the gastrocnemius muscles from ultrasound radiofrequency signals. Nan Fang Yi Ke Da Xue Xue Bao, 35(8), 1116-1121.
  30. Peetrons P(2002). Ultrasound of muscles. Eur Radiol, 12(1), 35-43. https://doi.org/10.1007/s00330-001-1164-6
  31. Van Donkelaar CC, Kretzers LJ, Bovendeerd PH, et al(1999). Diffusion tensor imaging in biomechanical studies of skeletal muscle function. J Anat, 194(Pt 1), 79-88. https://doi.org/10.1046/j.1469-7580.1999.19410079.x
  32. Zajac FE(1989). Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng, 17(4), 359-411.
  33. Zheng YP, Chan MM, Shi J, et al(2006). Sonomyography: monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Med Eng Phys, 28(5), 405-415. https://doi.org/10.1016/j.medengphy.2005.07.012
  34. Zhou GQ, Chan P, Zheng YP(2015). Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging. Ultrasonics, 57, 72-83. https://doi.org/10.1016/j.ultras.2014.10.020
  35. Zhou GQ, Zheng YP(2015). Automatic fascicle length estimation on muscle ultrasound images with an orientation-sensitive segmentation. IEEE Trans Biomed Eng, 62(12), 2828-2836. https://doi.org/10.1109/TBME.2015.2445345