• Title/Summary/Keyword: Automatic Finite-Element Generation

Search Result 101, Processing Time 0.036 seconds

Automatic Generation of Finite Element Meshes by Regenerating NURBS Surfaces (NURBS 곡면 재생성을 통한 유한 요소망의 자동 생성)

  • 박정민;채수원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.784-787
    • /
    • 2002
  • The NURBS surfaces are widely employed for exchanging geometric models between different CAD/CAE systems. However if the input NURBS surfaces are poorly parameterized, most surface meshing algorithms may fail or the constructed meshes can be ill-conditioned. In this paper presents a new method is presented that can generate well conditioned meshes even on poorly parameterized NURBS surfaces by regenerating NURBS surfaces. To begin with, adequate Points are sample on original poorly parameterized surfaces and new surfaces are created by interpolating these points. And then. mesh generation is performed on new surfaces. With this method, models with poorly parameterized NURBS surfaces can be meshed successfully.

  • PDF

Automatic Tetrahedral Mesh Generation Using Advancing Front Technique with Node Searching (절점 탐색이 적용된 전진경계법에 의한 사면체 요소망의 자동생성)

  • 전성재;채수원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.91-99
    • /
    • 2004
  • An unstructured tetrahedral mesh generation algorithm has been presented. In order to construct better meshes in interior region by using an advancing front technique, a connecting operator and a local finishing operator II have been developed in addition to the existing operators. Before applying digging operators that generate new nodes inside of a meshing region, a connecting operator is employed that uses existing nodes which satisfy certain conditions for producing well-conditioned elements. The local finishing operator II is introduced to terminate the meshing process more flexibly on remaining subregions. With these new operators, tetrahedral meshing process becomes more robust and good quality of meshes are constructed.

Development of Automated J-Integral Analysis System for 3D Cracks (3차원 J적분 계산을 위한 자동 해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF

Automatic Generation of Orthogonal Arrays and Its Application to a Two-Step Structural Optimization (실험에 적합한 직교 배열표의 자동 생성 및 2 단계 구조 최적화에의 적용)

  • 이수범;곽병만
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2047-2054
    • /
    • 2003
  • In this paper, an approach of automatically finding and modifying the most appropriate orthogonal array (GO) is suggested and applied to a new structural optimization procedure with two steps. GO is motivated by the situation where finding a proper orthogonal array from the tables in the literature is difficult or impossible. Now the Taguchi method is made available for various numbers of variables and levels. In the two-step structural optimization, the Taguchi method equipped with GO and a shape optimization using the finite differencing method is consecutively applied. The existence or non-existence of an element can be taken as a factor level and this feature is utilized finding the best topology from a set of potential topologies suggested from the user's expertise. This greatly enhances applicability and one can expect a better result than the case in which each step is applied independently because these steps are complementary each other.

Automatic Three Dimensional Mesh Generation using Delaunay's Triangulation (Delaunay's 삼각화를 이용한 3차원 자동요소분할)

  • 김형석;정현교;이기식;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.847-853
    • /
    • 1988
  • A method of three-demensional finite element mesh generation is presented in this paper. This method is based on the Delaunay's triangulation whose dual is Voronoi's diagram. A set of points is given on the boundary surface of the concerning domain and the initial tetrahedra are generated by the given set of points. Then, the quality of every tetrahedron is investigated and the interior points are generated near the tetrahedra which are inferior in quality and the tetrahedra of good quality can be controlled by the density of the initial boundary points. Regions with different material constant can be refined in tetrahedra respectively. To confirm the effectiveness of this algorithm,the total volume of tetrahedra was compared to the true volume and this mesh generator was applied to a three-dimensional electostatic problem.

  • PDF

Numerical simulation of the crack propagation behavior in 3D elastic body

  • Taniguchi, Takeo;Miyaji, Akihiko;Suetsugu, Takeshi;Matsunaga, Shohgo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.227-244
    • /
    • 1994
  • The purpose of this investigation is to propose a numerical simulation method of the crack propagation behavior in 3-dimensionl elastic body. The simulation method is based on the displacement-type finite element method, and the linear fracture theory is introduced. The results from the proposed method are compared with those from the structural experiments, and the good coincidences between them are shown in this paper. At the same time, 2-dimensional analysis is also done, and the results are compared with those obtained from 3-dimensional analysis and the structural experiments.

Study on the Thermal Analysis of Extra-High Voltage OF Cable Accessories using Finite Element Method (유한요소법에 의한 초고압 OF 케이블 접속재의 주도해석에 관한 연구)

  • Lee, Jong-Bum;Kang, Dong-Sik;Kang, Do-Hyun;Lee, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.211-215
    • /
    • 1989
  • This paper presents the thermal analysis of EHV OF cable accessories using FEM. The governing equation about the temperature in the cable accessories is induced by the energy balance equation. Since the temperature distribution is a function of space and time, the weighted residual method is adopted for FEM formulation. The difference approximation is used to treat the time differential term in the element equation. Automatic mesh generation which save time and labor is introduced for the data input process. It will be expected that the following thermal analysis result will be very useful to cable accessories design.

  • PDF

Develpment of Automated Stress Intensity Factor Analysis System for Three-Dimensional Cracks (3차원 균열에 대한 자동화된 응력확대계수해석 시스템 개발)

  • 이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.64-73
    • /
    • 1997
  • 솔리드 모델러, 자동요소분할 기법, 4면체 특이요소, 응력확대계수의 해석 기능을 통합하여, 3차원 균열의 응력확대계수를 효율적으로 해석할 수 있는 시스템을 개발하였다. 균열을 포함하는 기하모델을 CAD 시스템을 이용하여 정의하고, 경계조건과 재료 물성치 및 절점밀도 분포를 기하모델에 직접 지정함으로써, 퍼지이론 에 의한 절점발생과 데로우니 삼각화법에 의한 요소가 자동으로 생성된다. 특히, 균열 근방에는 4면체 2차 특이요소를 생성시켰으며, 유한요소 해석을 위한 입력 데이터가 자동으로 작성되어 해석코드에 의한 응력 해석이 수행된다. 해석 후, 출력되는 변위를 이용하여 변위외삽법에 의한 응력확대계수가 자동적으로 계산되어 진다. 본 시스템의 효용성을 확인하기 위해, 인장력을 받는 평판내의 표면균열에 대해 해석하여 보았다.

  • PDF

Development of Automated Analysis System for Model Plane Engine Using Fuzzy Knowledge Processing

  • Lee, Joon-Seong;Lee, Shin-Pyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.171-176
    • /
    • 2002
  • This paper describes a new automated analysis system for model plane engine. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes, ANSYS, and one of commercial solid modelers, Designbase, The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of plane engine to be analyzed, i.e. deformation analysis, thermal analysis and so on. The FE models are then automatically analyzed by the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns, the assignment of material properties and boundary conditions onto the geometry model are only the interactive processes to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a personal computer environment. The proposed analysis system is successfully applied to evaluate a model plane entwine.

Optimal Design for 3D Structures Using Artificial Intelligence : Its Application to Micro Accelerometer (인공지능을 이용한 3차원 구조물의 최적화 설계 : 마이크로 가속도계에 적용)

  • Lee, Joon-Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.445-450
    • /
    • 2004
  • This paper describes an optimal design system for multi-disciplinary structural design. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry technique, is incorporated into the system, together with a commercial FE analysis code and a commercial solid modelers. An optimum design solution or satisfactory solutions are then automatically searched using the genetic algorithms modified for real search space, together with the automated FE analysis system. With an aid of genetic algorithms, the present design system allows us to effectively obtain a multi-dimensional solutions. The developed system is successfully applied to the shape design of a micro accelerometer based on a tunnel current concept.