• Title/Summary/Keyword: Automatic Extraction

Search Result 887, Processing Time 0.023 seconds

Automated Chromosome Samples Extraction using Region Splitting Method (영역분할 기법을 이용한 염색체 표본 자동추출)

  • Eom, Sang-Hee;Jeon, Gye-Rok;Lee, Kwon-Soon;Chang, Yong-Hoon;Lee, Sang-Yeol
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.127-130
    • /
    • 1995
  • Chromosome analysis is an important and difficult task for clinical diagnosis, for mutagen dosimetry, and for biological research. It is expensive, time consuming and imprecise when performed manually. Efforts lo automate some or all of the procedures have continued for more than 30 years, with only limited success. An acquiring sample from chromosome group is not solved with automatic method. It is still performed by user. This paper represents the method of an automatic chromosome sample extraction which based on region splitting, and scan converted method.

  • PDF

Automatic Extraction of Collocations based on Corpus using mutual information (말뭉치에 기반한 상호정보를 이용한 연어의 자동 추출)

  • Lee, Ho-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.461-468
    • /
    • 1994
  • This paper describes the automatic extraction of collocations based on corpus. The collocations are extracted from corpus using cooccurrence frequency and mutual information between words. In English, 5 types of collocations are defined. These collocations are transitive verb and object, intransitive verb and subject, adjective and noun, verb and adverb, and adverb and adjective. In this paper another type of collocation is recognized and extracted, which consists of verb and preposition. So 6 types of collocations are extracted based on corpus.

  • PDF

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

Approaches for Automatic GCP Extraction and Localization in Airborne SAR Images and Some Test Results

  • Tsay, Jaan-Rong;Liu, Pang-Wei
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.360-362
    • /
    • 2003
  • This paper presents simple feature-based approaches for full- and/or semi-automatic extraction, selection, and localization (center-determination) of ground control points (GCPs) for radargrammetry using airborne synthetic aperture radar (SAR) images. Test results using airborne NASA/JPL TOPSAR images in Taiwan verify that the registration accuracy is about 0.8${\sim}$1.4 pixels. In c.a. 30 minutes, 1500${\sim}$3000 GCPs are extracted and their point centers in a SAR image of about 512 ${\times}$ 512 pixels are determined on a personal computer.

  • PDF

Design and application of effective data extraction technique from Web databases (웹 기반 데이터베이스로부터의 유용한 데이터 추출 기법의 설계 및 응용)

  • Hwang, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.309-314
    • /
    • 2005
  • This paper analyzes techniques that extract objective information from distributed web databases for bioinformatics based on relationship among information. Moreover, we discuss the design and implementation of a method for knowledge enhancement in respect of protein information. Web data extractor can be constructed by using a manual, semi-automatic, or automatic way. Data extractor generally makes use of identifiers in order to search and extract targeting information from a specified web page. This paper presents a design and implementation for the protein databases of an organism by utilizing web data extraction techniques.

  • PDF

A Study on the Automatic Extraction of Fomulation and Properties in Chemical Field Patent Document by Using Machine Learning Technology (기계학습 기술을 활용한 화학분야 특허문서의 조성/물성 정보 자동추출 방법 연구)

  • Kim, Hongki;Lee, Hayoung;Park, Jinwoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.277-280
    • /
    • 2019
  • 본 논문에서는 화학분야 특허 문서에 존재하는 도표(TABLE) 데이터를 인공지능 기술을 활용하여 자동으로 추출하고 정형화된 형태로 가공하는 방법을 제안한다. 특허 문서에서 도표 데이터는 실시예에서 실험결과나 비교결과를 간결하고 가시적으로 표현하기 위하여 주로 사용되나, 셀의 속성을 정의하는 헤더부분과 수치가 표현되는 값 부분의 경계가 모호하여 구조화하는데 어려움이 있다. 본 논문에서 제안하는 방법은 소량의 학습데이터를 구축하고 기계학습을 통해 도표에 존재하는 셀의 속성을 예측하고, 예측된 속성을 토대로 조성과 물성 정보를 자동으로 구분하여 추출하는 방법을 제시한다. 제시된 방법을 활용하여 화학 분야 조성물 특허의 도표데이터에 시뮬레이션 결과 각 항목별 98.17%의 속성 예측 정확도를 나타내었으며 기존 규칙기반 연구보다 작업난이도, 예측정확도에서 우수한 성과를 보인다.

  • PDF

Dynamic Expansion of Semantic Dictionary for Topic Extraction in Automatic Summarization (자동요약의 주제어 추출을 위한 의미사전의 동적 확장)

  • Choo, Kyo-Nam;Woo, Yo-Seob
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.241-247
    • /
    • 2009
  • This paper suggests the expansion methods of semantic dictionary, taking Korean semantic features account. These methods will be used to extract a practical topic word in the automatic summarization. The first is the method which is constructed the synonym dictionary for improving the performance of semantic-marker analysis. The second is the method which is extracted the probabilistic information from the subcategorization dictionary for resolving the syntactic and semantic ambiguity. The third is the method which is predicted the subcategorization patterns of the unregistered predicate, for the resolution of an affix-derived predicate.

  • PDF

Self-Evolving Expert Systems based on Fuzzy Neural Network and RDB Inference Engine

  • Kim, Jin-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.19-38
    • /
    • 2003
  • In this research, we propose the mechanism to develop self-evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most researchers had tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, this approach had some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, knowledge engineers had tried to develop an automatic knowledge extraction mechanism. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference engine. Our proposed mechanism has five advantages. First, it can extract and reduce the specific domain knowledge from incomplete database by using data mining technology. Second, our proposed mechanism can manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it can construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems) module. Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy relationships. Fifth, RDB-driven forward and backward inference time is shorter than the traditional text-oriented inference time.

  • PDF

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.

Data Mining and FNN-Driven Knowledge Acquisition and Inference Mechanism for Developing A Self-Evolving Expert Systems

  • Kim, Jin-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.99-104
    • /
    • 2003
  • In this research, we proposed the mechanism to develop self evolving expert systems (SEES) based on data mining (DM), fuzzy neural networks (FNN), and relational database (RDB)-driven forward/backward inference engine. Most former researchers tried to develop a text-oriented knowledge base (KB) and inference engine (IE). However, thy have some limitations such as 1) automatic rule extraction, 2) manipulation of ambiguousness in knowledge, 3) expandability of knowledge base, and 4) speed of inference. To overcome these limitations, many of researchers had tried to develop an automatic knowledge extraction and refining mechanisms. As a result, the adaptability of the expert systems was improved. Nonetheless, they didn't suggest a hybrid and generalized solution to develop self-evolving expert systems. To this purpose, in this study, we propose an automatic knowledge acquisition and composite inference mechanism based on DM, FNN, and RDB-driven inference. Our proposed mechanism has five advantages empirically. First, it could extract and reduce the specific domain knowledge from incomplete database by using data mining algorithm. Second, our proposed mechanism could manipulate the ambiguousness in knowledge by using fuzzy membership functions. Third, it could construct the relational knowledge base and expand the knowledge base unlimitedly with RDBMS (relational database management systems). Fourth, our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic. Fifth, RDB-driven forward and backward inference is faster than the traditional text-oriented inference.

  • PDF