• Title/Summary/Keyword: Automatic Exposure Control

Search Result 97, Processing Time 0.024 seconds

The Effect of Body Mass Index on Entrance Surface Air Kerma in Abdominal X-ray Radiography Using Automatic Exposure Control (자동노출제어를 이용한 복부 일반 X선 검사에서 체질량지수가 입사표면공기커마에 미치는 영향)

  • Koo, No-Hyun;Yoon, Hee-Soo;Choi, Kwan-Woo;Lee, Jong-Eun;Kim, Jeong-Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.659-667
    • /
    • 2018
  • The purpose of this study was to determine the effect of body mass index (BMI) on entrance surface air kerma (ESAK) in abdominal X-ray radiography using automatic exposure control (AEC). This study included 321 patients who underwent abdominal X-ray using AEC, and we correlated ESAK with height, weight, BMI and compared mean ESAK according to BMI grades (Underweight, Normal, Overweight, Obese 1, Obese 2). As a result, Weight ($R^2=0.777$, p<.001) and BMI ($R^2=0.835$, p<.001) were positively associated with ESAK, but no significant association was found between height ($R^2=0.075$, p<.001) and ESAK. The mean ESAK with respect to BMI grades showed statistically significant difference and in the post-hoc analysis, the existence of 5 subgroups at the significance level of 0.05 indicated that there were differences in the ESAK in all BMI grades. Also, as the increment of ESAK between two neighboring BMI grades increases from Underweight to Obese 2, the exposure dose dramatically increased as the BMI increased. Thus, an excessive exposure dose due to increasing BMI when using AEC should be acknowledged and Efforts to reduce dose should be taken, such as: by fixing the exposure conditions.

Correlation Analysis of Control Factors in Automatic Exposure Control of Digital Radiography System Based on Fine Contrast Images (미세 대조도 영상을 기반한 디지털 방사선 영상 시스템의 자동노출제어 조절인자 간의 상관관계 분석)

  • Lim, Se-Hun;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The purpose of this study was to analyze the effect of automatic exposure control (AEC) control factors in digital radiography systems based on the fine contrast images using coin phantoms. The AEC control factors were targeted at the range of dominent zone, sensitivity, and density. The dominent zone was divided into cases where a single coin was used to cover the field configuration, and cases where seven coins were used to cover the field configuration. The sensitivity was classified into three stages (200, 400, 800) and the density was classified into three stages (2.5, 0, 2.5). Image quality was evaluated by signal to noise ratio (SNR) and contrast to noise ratio (CNR). Then, the automatically exposed tube current was measured. As a result, the X-ray image of seven coins obtained a result value of about 1.2 times higher for SNR and 1.9 times higher for CNR than the X-ray image for one coin. The tube current was also about 1.6 times higher. In conclusion, In AEC, the higher the field configuration and dominent zone are matched and the higher the density, the lower the sensitivity, which increases the tube current and CNR, which increases the image quality. Therefore, it is judged that the appropriate setting of the range of dominent zone, sensitivity, and density of the control, which is the AEC control factor, could improve the fine contrast of images.

The effects of image acquisition control of digital X-ray system on radiodensity quantification

  • Seong, Wook-Jin;Kim, Hyeon-Cheol;Jeong, Soocheol;Heo, Youngcheul;Song, Woo-Bin;Ahmad, Mansur
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.146-153
    • /
    • 2013
  • Objectives: Aluminum step wedge (ASW) equivalent radiodensity (eRD) has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC) of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods: Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L), nonlinear mapping (N), and nonlinear mapping and automatic exposure control activated (E)) under 3 exposure time settings (underexposure, normal-exposure, and overexposure). The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results: The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049) but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions: Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the underexposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient.

An Automatic Visual Alignment System for an Exposure System (노광시스템을 위한 자동 정렬 비젼시스템)

  • Cho, Tai-Hoon;Seo, Jae-Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.43-48
    • /
    • 2007
  • For exposure systems, very accurate alignment between the mask and the substrate is indispensable. In this paper, an automatic alignment system using machine vision for exposure systems is described. Machine vision algorithms are described in detail including extraction of an alignment mark's center position and camera calibration. Methods for extracting parameters for alignment are also presented with some compensation techniques to reduce alignment time. Our alignment system was implemented with a vision system and motion control stages. The performance of the alignment system has been extensively tested with satisfactory results. The performance evaluation shows alignment accuracy of lum within total alignment time of about $2{\sim}3$ seconds including stage moving time.

  • PDF

A Study on the Image Quality of Mammography and the Average Glandular Dose (맘모그래피의 화질과 평균유선조직선량에 관한 검토)

  • Lee, In-Ja;Kim, Hak-Sung;Kim, Sung-Soo;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.25 no.2
    • /
    • pp.47-55
    • /
    • 2002
  • We came to the following conclusion as the results of experiment on the image quality of mammography and the average glandular dose using 4 apparatuses at 3 hospitals in Seoul. 1. Whereas the measurement of half value layer showed no differences among the apparatuses, the measurement by an attenuation curve method showed some differences by 5.9%. There were 9.1% differences in the measurement by aluminum conversion method. 2. The basic density of an automatic exposure control unit must be D = 1.40, but there was no automatic exposure unit adjusted precisely at any hospitals. The unit at the B hospital exceeded the allowable limit by ${\pm}0.15$. 3. In the photographing using an automatic exposure control unit and the management of an automatic film processor using a sensitometer, most automatic film processors were well kept. But in some cases the mean value of a fluctuation coefficient exceeded the allowable limit. There is a need for more cautious management. 4. The image quality of breast phantom photography was affected by the screen/film system among the hospitals. 5. The average glandular dose at a breast of 4.2 cm thickness depended on the tube voltage, In the case of Mo/Mo, it was measured $0.26{\sim}1.39\;mGy$ less than ACR standard 3.0 mGy.

  • PDF

Automatic Exposure Time Control of WDR Camera Adapting Neural Network (뉴럴 네트워크를 이용한 WDR 카메라 자동 노출 제어)

  • Yun, Se-Hwan;Kim, Jin-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.364-366
    • /
    • 2004
  • WDR(Wide Dynamic Range) camera has been recently introduced to provide good detailed information for the extremely dark or white area. The double shuttering camera acquires two pictures with different exposure time for the same scenes so that each image has its unique information as for the bright/dark area. Those images are combined internally to produce an image with enough details. This paper proposes a NN based method to control the exposure time of the WDR camera. Our goal is to develop a method to automatically control the exposure time like human decision. A neural model is trained to determine to increase/decrease shutter time for the given situation. The ability to adapt to unknown situation is shown for the sample cases.

  • PDF

Development of Automatic Tracking Control Algorithm for Efficiency Improvement of PV Generation (태양광 발전의 효율 향상을 위한 자동추적 제어 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1823-1831
    • /
    • 2010
  • This paper proposes an automatic tracking control algorithm for efficiency improvement of photovoltaic generation. Increasing the power of PV systems should improve the efficiency of solar cells or the power condition system. The normal alignment of the PV module always have to run perpendicular to the sun's rays. The solar tracking system, able to improve the efficiency of the PV system, was initiated by applying that to the PV power plant. The tracking system of conventional PV power plant has been studied with regard to the tracking accuracy of the solar cells. Power generation efficiency were increased by aligning the cells for maximum exposure to the sun's rays. Using a perpendicular position facilitated optimum condition. However, there is a problem about the reliability of tracking systems unable to not track the sun correctly during environmental variations. Therefore, a novel control algorithm needs to improve the generation efficiency of the PV systems and reduce the loss of generation. This control algorithm is the proposed automatic tracking algorithm in this paper. Automatic tracking control is combined the sensor and program method for robust control in environment changing condition. This tracking system includes the insolation, rain sensor and anemometer for climate environment changing. Proposed algorithm in this paper, is compared to performance of conventional tracking control algorithm in variative insolation condition. And prove the validity of proposed algorithm through the experimental data.

The Usability Assessment of Self-developed Phantom for Evaluating Automatic Exposure Control System Using Three-Dimensions Printing (자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가)

  • Lee, Ki-Baek;Nam, Ki-Chang;Kim, Ho-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.147-153
    • /
    • 2020
  • This study was to evaluate the usability of self-developed phantom for evaluating automatic exposure control (AEC) using three-dimensions (3D) printer. 3D printer of fused deposition modeling (FDM) type was utilized to make the self-developed AEC phantom and image acquisitions were conducted by two different type of scanners. The self-developed AEC phantom consisted of four different size of portions. As a result, two types of phantom (pyramid and pentagon shape) were created according to the combination of the layers. For evaluating the radiation dose with the two types of phantom, the values of tube current, computed tomography dose index volume (CTDIvol), and dose length product (DLP) were compared. As a result, it was confirmed that the values of tube current were properly reflected according to the thickness, and the CTDIvol and DLP were not significantly changed regardless of AEC functions of different scanners. In conclusion, the self-developed phantom by using 3D printer could assess whether the AEC function works well. So, we confirmed the possibility that a self-made phantom could replace the commercially expensive AEC performance evaluation phantom.

A Study on Vision System Design for Automatic Inspection of Steam Generator in Nuclear Power Plants (원전 스팀 제너레이터 세관 자동검사용 비젼시스템 설계에 관한 연구)

  • 한성현;서운학;천영신;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.658-665
    • /
    • 1998
  • In this paper, we propose a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from the radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the proposed vision system. Performance of the proposed digital vision system is illustrated by simulation and experiment for similar steam generator model.

  • PDF