A computer vision system was built to generate images of a single, stationary egg. This system includes a CGD camera, a frame grabber, and incandescent back lighting system. Image processing algorithms were developed to inspect egg shell and to sort eggs. Those values of both gray level and area of dark spots in the egg image were used as criteria to detect holes in egg and those values of both area and roundness of dark spots in the egg image were used to detect cracks in egg. For a sample of 300 eggs, this system was able to correctly analyze an egg for the presence of a defect 97.5% of the time. The weights of eggs were found to be linear to both the projected area and the perimeter of eggs viewed from above. Those two values were used as criteria to sort eggs. The coefficients of determination(r$^2$) for the regression equations between weights and those two values were 0.967 and 0.972 in the two sets of experiment. Accuracies in grading were found to be 95.6% and 96.7% as compared with results from sizing by electronic weight scale.
In order to improve the performance of the visual inspection process, in addition to existing automatic visual inspection machine and human inspectors have developed a new process configuration using a Naive Bayes classifier. By applying the classifier, defect leakage and human inspector's work amount could be improved at the same time. New classification method called AMPB was applied instead of conventional methods based on MAP classification. By experimental results using the filter product for camera modules, it was confirmed that it is possible to configure the process at the level of leakage ratio 1.14% and human inspector's work amount ratio 75.5%. It is significant that the result can be applied in such a wide range as gas leak detection which is the collaboration process between inspection machine and human inspector's
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.415-417
/
2012
본 논문에서는 산업용 CT 영상에서 다중 해상도 기반의 밝기값 정보와 형태 정보를 이용하여 내부 기공결함을 정확하고 빠르게 검출하는 기법을 제안한다. 첫째, 대용량 CT 데이터에서 계산량을 줄이기 위하여 1/2 해상도로 변환 후 관심영역을 자동 산정하고, 링 또는 금속 인공물 등의 잡음을 제거하기 위해 비등방성 확산 필터링을 수행한다. 둘째, 기공 결함 후보군을 검출하기 위해 밝기값 기반의 결함 검출 기법을 제안한다. 셋째, 결함 검출의 민감도를 향상시키기 위해 형태 정보를 이용한 기공 결함 검출 기법을 제안한다. 넷째, 수행시간 가속화를 위하여 다중 해상도 영상 처리 및 Open MP를 적용한다. 제안방법의 평가를 위하여 육안평가와 정확성 평가, 수행시간을 측정하였다. 정확성 평가는 실제 기공 결함과 제안방법 적용 후 결함 간 중복 픽셀 수로 측정하였다. 실험 결과 평균 중복 픽셀 비율은 91%로 측정되었고, 가장 큰 비율은 99%, 가장 작은 비율은 80%로 측정되었다. 다중 해상도 기법 및 Open MP를 적용함으로써 해상도 데이터 수행시간보다 90% 가속화되었다.
Journal of Korea Society of Industrial Information Systems
/
v.26
no.6
/
pp.11-16
/
2021
In this paper, a quality inspection system was developed to identify the defective assembly of connectors used in automobile wiring. For waterproof connectors, an internal seal must be inserted for waterproofing. However, there are cases where it is omitted or double-inserted during production. An automatic inspection jig was designed using photosensors and touch switches to classify good and bad connector components. In the case of the existing visual inspection, 6,400 connectors were inspected when 5 people inspected for 8 hours. However, when using the inspection jig developed under the same conditions, 20,000 pieces were inspected. In other words, the productivity is greatly improved compared to the conventional visual inspection.
Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.2
/
pp.193-201
/
2021
The welding has a high proportion of the production and drying of ships or offshore plants. Non-destructive testing is carried out to verify the quality of welds in Korea, radiography test (RT) is mainly used. Currently, most shipyards adopt analog-type techniques to print the films through the shoot of welding parts. Therefore, the time required from radiography test to pass or fail judgment is long and complex, and is being manually carried out by qualified inspectors. To improve this problem, this paper covers a platform for scanning and digitalizing RT films occurring in shipyards with high resolution, accumulating them in management servers, and applying artificial intelligence (AI) technology to detect welding defects. To do this, we describe the process of designing and developing RT film scanning equipment, welding inspection information integrated management platform, fault reading algorithms, visualization software, and testing and verification of each developed element in conjunction.
Recently, according to development of artificial intelligence, a wide range of industry being automatic and optimized. Also we can find out some research of using supervised learning for deteceting defect of railway in domestic rail industry. However, there are structures other than rails on the track, and the fastener is a device that binds the rail to other structures, and periodic inspections are required to prevent safety accidents. In this paper, we present a method of reducing cost for labeling using semi-supervised and transfer model trained on rail fastener data. We use Resnet50 as the backbone network pretrained on ImageNet. At first we randomly take training data from unlabeled data and then labeled that data to train model. After predict unlabeled data by trained model, we adopted a method of adding the data with the highest probability for each class to the training data by a predetermined size. Futhermore, we also conducted some experiments to investigate the influence of the number of initially labeled data. As a result of the experiment, model reaches 92% accuracy which has a performance difference of around 5% compared to supervised learning. This is expected to improve the performance of the classifier by using relatively few labels without additional labeling processes through the proposed method.
In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.