• Title/Summary/Keyword: Automatic Building Extraction

Search Result 71, Processing Time 0.033 seconds

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

Refinement of Building Boundary using Airborne LiDAR and Airphoto (항공 LiDAR와 항공사진을 이용한 건물 경계 정교화)

  • Kim, Hyung-Tae;Han, Dong-Yeob
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.136-150
    • /
    • 2008
  • Many studies have been carried out for automatic extraction of building by LiDAR data or airphoto. Combining the benefits of 3D location information data and shape information data of image can improve the accuracy. So, in this research building recognition algorithm based on contour was used to improve accuracy of building recognition by LiDAR data and elaborate building boundary recognition by airphoto. Building recognition algorithm based on contour can generate building boundary and roof structure information. Also it shows better accuracy of building detection than the existing recognition methods based on TIN or NDSM. Out of creating buffers in regular size on the building boundary which is presumed by contour, this research limits the boundary area of airphoto and elaborate building boundary to fit into edge of airphoto by double active contour. From the result of this research, 3D building boundary will be able to be detected by optimal matching on the constant range of extracted boundary in the future.

  • PDF

Issues and Standardization technology in Automatic Extraction to Create an Planar Figure of Envelope based on BIM (BIM 기반 외피전개도 자동추출의 고려사항 및 표준화 연구)

  • Park, Young-Joon;Kim, Chang-Min;Park, Byung-Yoon;Choi, Chang-Ho
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.591-605
    • /
    • 2018
  • The information on the planar figure of the building envelope is commonly required in various criteria related to the energy performance of the building. However, since the method of creating varies depending on each criterion, the information displayed in the planar figure of the building envelope differs considerably according to the person making the figure. In this regard, this study sought to derive the commonly required information for the unification of the information included in the planar figure of the building envelope, and thus examine the standardization of the planar figure of the building envelope based on BIM. Towards this end, 1) the required information about the planar figure of the building envelope was derived through the literature review and case analysis results submitted to the energy performance evaluation agencies, and 2) the standardized output technology using IFC was investigated based on the required information. Therefore, it is expected that the findings of this study will help to create a general-purpose planar figure for the building envelope, and this study can serve as the preliminary research for automatically extracting the information on the planar figure of the building envelope.

A Study of Automatic Ontology Building by Web Information Extraction and Natural Language Processing (웹 문서 정보추출과 자연어처리를 통한 온톨로지 자동구축에 관한 연구)

  • Kim, Myung-Gwan;Lee, Young-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2009
  • The proliferation of the Internet grows, according to electronic documents, along with increasing importance of technology in information retrieval. This research is possible to build a more efficient and accurate knowledge-base with unstructured text documents from the Web using to extract knowledge of the core meaning of LGG (Local Grammar Graph). We have built a ontology based on OWL(Web Ontology Language) using the areas of particular stocks up/down patterns created by the extraction and grammar patterns. It is possible for the user can search for meaning and quality of information about the user wants.

  • PDF

Material Auto-Transformation Plan using Steal House Method (스틸하우스 공법을 이용한 자재 자동 변환 방안)

  • Han, Jung-Soo;Kim, Gui-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.25-31
    • /
    • 2011
  • In this paper, we propose virtual building construction plans. For this, we compose the construction materials with components and assemble components in pattern. When we change assembled constructions, we can design the building efficiently with patterns if the parts are selected. Also through information analysis of material components or patterns, we can provide information which is necessary to a reconstruction to the designer. Using steal house method, the assembly functions were comprised of a wall, a room, a window, a door, roof etc. Also We explained the materials automatic extraction method which applies steal house.

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments (가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법)

  • Cho, Younggun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.

Deep learning approach to generate 3D civil infrastructure models using drone images

  • Kwon, Ji-Hye;Khudoyarov, Shekhroz;Kim, Namgyu;Heo, Jun-Haeng
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.501-511
    • /
    • 2022
  • Three-dimensional (3D) models have become crucial for improving civil infrastructure analysis, and they can be used for various purposes such as damage detection, risk estimation, resolving potential safety issues, alarm detection, and structural health monitoring. 3D point cloud data is used not only to make visual models but also to analyze the states of structures and to monitor them using semantic data. This study proposes automating the generation of high-quality 3D point cloud data and removing noise using deep learning algorithms. In this study, large-format aerial images of civilian infrastructure, such as cut slopes and dams, which were captured by drones, were used to develop a workflow for automatically generating a 3D point cloud model. Through image cropping, downscaling/upscaling, semantic segmentation, generation of segmentation masks, and implementation of region extraction algorithms, the generation of the point cloud was automated. Compared with the method wherein the point cloud model is generated from raw images, our method could effectively improve the quality of the model, remove noise, and reduce the processing time. The results showed that the size of the 3D point cloud model created using the proposed method was significantly reduced; the number of points was reduced by 20-50%, and distant points were recognized as noise. This method can be applied to the automatic generation of high-quality 3D point cloud models of civil infrastructures using aerial imagery.

Automatic Tree Extraction Using LIDAR Data (라이다 자료를 이용한 수목추출 자동화)

  • Lee, Su Jee;Kim, Eui Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Trees are important ground objects that cause oxygen and reduce carbon dioxide in urban areas. For management of the trees, many studies using LIDAR data have been conducted. But, they rely on overseas developed LIDAR data processing software applications because there is a lack of domestically developed software applications. Therefore, this work was intended to propose an automation process that helps to extract trees automatically from LIDAR data. The proposed process has the function to classify LIDAR data and to extract building regions and trees automatically. It was applied to a study place in Yongin to conduct a test. As a result, about 88% of trees were extracted from the automation process.

Human Power a Prospect of Building Automatic Control a Field (빌딩자동제어분야의 인력수요전망)

  • Kim, Soo-Yong;Jee, Suk-Kun
    • Journal of Engineering Education Research
    • /
    • v.11 no.3
    • /
    • pp.90-95
    • /
    • 2008
  • This thesis investigated way of employment, education course of a training school of electrical company. I inquired into a demand of an engineer and a necessary level of professional education. As a result, I have a purpose in what offer the information that cared for a beginning to work elevation and education training and boat development of a student more than. Faced a human power demand in an education demand and a field rehearsal student demand and analyzed it. The sample extraction used industrial classification, work of scale, Assignment sample extraction way (quota Sampling). All data called at a silver phone and the investigated, The data parser analyzed the statistics that used Microsoft Excel.