• Title/Summary/Keyword: Automatic 3D measurement

Search Result 120, Processing Time 0.027 seconds

A Study on Development of the 3D Modeling System for Earthwork Environment (토공 작업환경의 3차원 모델링 시스템 개발에 관한 연구)

  • Yoo, Hyun-Seok;Chae, Myung-Jin;Kim, Jung-Yeol;Cho, Moon-Young
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.977-982
    • /
    • 2007
  • There have been many efforts in automatic object recognition using computing technologies. Especially in the development of automated construction equipment, automatic object recognition is very important issue for the proper equipment maneuvering. 3D laser scanning, which uses (time-of-flight) method to construct the 3-dimensional information, is applied to the civil earth work environment for its high accuracy, quick data collection, and object recognition capability that will be developed by the authors in the future. The 3D earth model is also used as a fundamental information for intelligent earth work task planning. This paper presents the analysis of the 3D laser scanner market and selection of the most optimum 3D scanner for the intelligent earth work planning. As well as the hardware configuration for the automated 3D earth modeling is developed but also the software structure and detailed user interface are designed in this research. In addition, it is presented in this paper that the accuracy comparison test between TotalStation(R) which is a traditional survey tool and ScanStation(R). The accuracy test is done by relative distance measurement using known targets.

  • PDF

3D Measurement System of Wire for Automatic Pull Test of Wire Bonding (Wire bonding 자동 전단력 검사를 위한 wire의 3차원 위치 측정 시스템 개발)

  • Ko, Kuk Won;Kim, Dong Hyun;Lee, Jiyeon;Lee, Sangjoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1130-1135
    • /
    • 2015
  • The bond pull test is the most widely used technique for the evaluation and control of wire bond quality. The wire being tested is pulled upward until the wire or bond to the die or substrate breaks. The inspector test strength of wire by manually and it takes around 3 minutes to perform the test. In this paper, we develop a 3D vision system to measure 3D position of wire. It gives 3D position data of wire to move a hook into wires. The 3D measurement method to use here is a confocal imaging system. The conventional confocal imaging system is a spot scanning method which has a high resolution and good illumination efficiency. However, a conventional confocal systems has a disadvantage to perform XY axis scanning in order to achieve 3D data in given FOV (Field of View) through spot scanning. We propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array to remove XY scan. 2D imaging system can detect 2D location of wire and it can reduce time to measure 3D position of wire. In the experimental results, the proposed system can measure 3D position of wire with reasonable accuracy.

An Error Analysis of the 3D Automatic Face Recognition Apparatus (3D-AFRA) Hardware (3차원 안면자동분석 사상체질진단기의 Hardware 오차분석)

  • Kwak, Chang-Kyu;Seok, Jae-Hwa;Song, Jung-Hoon;Kim, Hyun-Jin;Hwang, Min-Woo;Yoo, Jung-Hee;Kho, Byung-Hee;Kim, Jong-Won;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.22-29
    • /
    • 2007
  • 1. Objectives Sasang Contitutional Medicine, a part of the traditional Korean medical lore, treats illness through a constitutional typing system that categorizespeople into four constitutional types. A few of the important criteria for differentiating the constitutional types are external appearances, inner state of mind, and pathological patterns. We had been developing a 3D Automatic Face Recognition Apparatus (3D-AFRA) in order to evaluate the external appearances with more objectivity. This apparatus provides a 3D image and numerical data on facial configuration, and this study aims to evaluate the mechanical accuracy of the 3D-AFRA hardware. 2. Methods Several objects of different shapes (cube, cylinder, cone, pyramid) were each scanned 10 times using the 3D Automatic Face Recognition Apparatus (3D-AFRA). The results were then compared and analyzed with data retrieved through a laser scanner known for its high accuracy. The error rates were analyzed for each grid point of facial contour scanned with Rapidform2006 (Rapidform2006 is a 3D scanning software that collects grid point data for contours of various products and products and product parts through 3D scanners and other 3D measuring devices; the grid point data thusly acquired is then used to reconstruct highly precise polygon and curvature models). 3. Results and Conclusions The average error rate was 0.22mm for the cube, 0.22mm for the cylinder, 0.125mm for the cone, and 0.172mm for the pyramid. The visual data comparing error rates for measurement figures retrieved with Rapidform2006 is shown in $Fig.3{\sim}Fig.6$. Blue tendency indicates smaller error rates, while red indicates greater error rates The protruding corners of the cube display red, indicating greater error rates. The cylinder shows greater error rates on the edges. The pyramid displays greater error rates on the base surface and around the vertex. The cone also shows greater error around the protruding edge.

  • PDF

Automatic wall slant angle map generation using 3D point clouds

  • Kim, Jeongyun;Yun, Seungsang;Jung, Minwoo;Kim, Ayoung;Cho, Younggun
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.594-602
    • /
    • 2021
  • Recently, quantitative and repetitive inspections of the old urban area were conducted because many structures exceed their designed lifetime. The health of a building can be validated from the condition of the outer wall, while the slant angle of the wall widely serves as an indicator of urban regeneration projects. Mostly, the inspector directly measures the inclination of the wall or partially uses 3D point measurements using a static light detection and ranging (LiDAR). These approaches are costly, time-consuming, and only limited space can be measured. Therefore, we propose a mobile mapping system and automatic slant map generation algorithm, configured to capture urban environments online. Additionally, we use the LiDAR-inertial mapping algorithm to construct raw point clouds with gravity information. The proposed method extracts walls from raw point clouds and measures the slant angle of walls accurately. The generated slant angle map is evaluated in indoor and outdoor environments, and the accuracy is compared with real tiltmeter measurements.

Realization for Automatic Stock Cubic Measuring and Distributing Management Embedded System with 3D Ultrasonic Sensing (3D 초음파센싱 자동물류부피측정 및 분류관리 임베디드시스템 구현)

  • Lee, Eun-Eok;Ryu, Kwang-Rryol;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.285-288
    • /
    • 2007
  • A realization for automatic stock cubic measuring and distributing management embedded system with 3 dimensional ultrasonic sensing is presented in this paper. The height and width of cubic are measured by comparing the 3 values from 3 ultrasonic sensors with reference when an object is passing the conveyer and length is calculated by the passing time and velocity, compensate cubic values for error to vary with the environment temperature, and reduce the error by averaging the sensing data not to be right posture of object. The system enables to classify and load a packed stocks at the store and transportation practically based on the rectangular hexahedral objects.

  • PDF

A Study on the Image Quality of Mammography and the Average Glandular Dose (맘모그래피의 화질과 평균유선조직선량에 관한 검토)

  • Lee, In-Ja;Kim, Hak-Sung;Kim, Sung-Soo;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.25 no.2
    • /
    • pp.47-55
    • /
    • 2002
  • We came to the following conclusion as the results of experiment on the image quality of mammography and the average glandular dose using 4 apparatuses at 3 hospitals in Seoul. 1. Whereas the measurement of half value layer showed no differences among the apparatuses, the measurement by an attenuation curve method showed some differences by 5.9%. There were 9.1% differences in the measurement by aluminum conversion method. 2. The basic density of an automatic exposure control unit must be D = 1.40, but there was no automatic exposure unit adjusted precisely at any hospitals. The unit at the B hospital exceeded the allowable limit by ${\pm}0.15$. 3. In the photographing using an automatic exposure control unit and the management of an automatic film processor using a sensitometer, most automatic film processors were well kept. But in some cases the mean value of a fluctuation coefficient exceeded the allowable limit. There is a need for more cautious management. 4. The image quality of breast phantom photography was affected by the screen/film system among the hospitals. 5. The average glandular dose at a breast of 4.2 cm thickness depended on the tube voltage, In the case of Mo/Mo, it was measured $0.26{\sim}1.39\;mGy$ less than ACR standard 3.0 mGy.

  • PDF

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

  • Shin, Myung-Kwan;Choi, Kyo-Soon;Park, Kyi-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1417-1422
    • /
    • 2005
  • Among the sensors mainly used for displacement measurement, there are a linear CCD(Charge Coupled Device) and a PSD(Position Sensitive Detector) as a non-contact type. Their structures are different very much, which means that the signal processing of both sensors should be applied in the different ways. Most of the displacement measurement systems to get the 3-D shape profile of an object using a linear CCD are a computer-based system. It means that all of algorithms and mathematical operations are performed through a computer program to measure the displacement. However, in this paper, the developed system has microprocessor and other digital components that make the system measure the displacement of an object without a computer. The thing different from the previous system is that AVR microprocessor and FPGA(Field Programmable Gate Array) technology, and a comparator is used to play the role of an A/D(Analog to Digital) converter. Furthermore, an ATC(Automatic Threshold Control) algorithm is applied to find the highest pixel data that has the real displacement information. According to the size of the light circle incident on the surface of the CCD, the threshold value to remove the noise and useless data is changed by the operation of AVR microprocessor. The total system consists of FPGA, AVR microprocessor, and the comparator. The developed system has the improvement and shows the better performance than the system not using the ATC algorithm for displacement measurement.

  • PDF

Development of Holographic Particle Velocimetry System and Its Application to Spray Droplets (홀로그래피 입자속도 측정시스템의 개발과 분무 액적에의 적용)

  • Choo, Y.J.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.17-28
    • /
    • 2005
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this study, diffused illumination holographic system to measure the sizes and 3D velocities of moving particles based on automatic image processing was developed. First of all basic optical systems for pulse laser recording, continuous laser reconstruction, and image acquisition, were constructed. To determine the position of particles in the optical axis, new three auto-focusing parameters(AEP), namely, Correlation Coefficient, Sharpness Index, and Depth Intensity were introduced and verified. The developed system was applied to spray droplets to validate the capability of the system. Three dimensional positions of particles viewed from two sides were decided using AFP and then 3D velocities of Particles were extracted by particle tracking algorithm. Comparison of measurement results of sizes and 3D velocities of particles with those obtained by laser instrument, PDPA, showed good consistency of the developed holographic system.

  • PDF

Development of Auto-spray system to improve the quality of 3D Scanning Quality (3D 스캔 시 품질향상을 위한 스프레이 도포 자동화 장비 개발)

  • Kim, Wonseop;Jo, Jae Heung;Kim, Dongsu;Kim, Donggyoo;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.100-105
    • /
    • 2016
  • The use of 3D scanners has increased gradually according to increasing 3D printer applications. The precision inspection of car parts or electronic components is an important issue not only in the field of mass production, but also in small-scale production. Recently, 3D scanner equipment efficiency and recognition technology has been improved continuously. On the other hand, the spraying time to prepare 3D scanning is time-consuming and has environmental problems. Therefore, an automatic spray system has been in demand by the manufacturing industry. Automatic spray equipment was newly developed for the preparation of a 3D scanner. In this research, the automatic spray system guarantees uniform spray operation. To determine the optimal spray parameters, various spraying methods, solutions and conditions were tested and compared with the experiments. The preparation time for 3D scanning was reduced to 1/10 compared to the manual spraying time, and indicates the optimal spraying conditions through a comparison of various spray coating conditions.