• Title/Summary/Keyword: Automated transfer crane system

Search Result 24, Processing Time 0.019 seconds

An Automatic Travel Control of a Container Crane using Neural Network Predictive PID Control Technique (신경회로망 예측 PID 제어법을 이용한 컨테이너 크레인의 자동주행제어)

  • Suh Jin Ho;Lee Jin Woo;Lee Young Jin;Lee Kwon Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • In this paper, we develop anti-sway control in proposed techniques for an ATC system. The developed algorithm is to build the optimal path of container motion and to calculate an anti-collision path for collision avoidance in its movement to the finial coordinate. Moreover, in order to show the effectiveness in this research, we compared NNP PID controller to be tuning parameters of controller using NN with 2 DOF PID controller. The experimental results for an ATC simulator show that the proposed control scheme guarantees performances, trolley position, sway angle, and settling time in NNP PID controller than other controller. As a result, the application of NNP PID controller is analyzed to have robustness about disturbance which is wind of fixed pattern in the yard. Accordingly, the proposed algorithm in this study can be readily used for industrial applications

Planning for Intra-Block Remarshaling to Enhance the Efficiency of Loading Operations in an Automated Container Terminal (자동화 컨테이너 터미널의 적하 작업 효율 향상을 위한 블록 내 재정돈 계획 수립 방안)

  • Park, Ki-Yeok;Park, Tae-Jin;Kim, Min-Jung;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.31-46
    • /
    • 2008
  • A stacking yard of a container terminal is a space for temporarily storing the containers that are carried in or imported until they are carried out or exported. If the containers are stacked in an inappropriate way, the efficiency of operation at the time of loading decreases significantly due to the rehandlings. The remarshaling is the task of rearranging containers during the idle time of transfer crane for the effective loading operations. This paper proposes a method of planning for remarshaling in a yard block of an automated container terminal. Our method conducts a search in two stages. In the first stage, the target stacking configuration is determined in such a way that the throughput of loading is maximized. In the second stage, the crane schedule is determined so that the remarshaling task can be completed as fast as possible in moving the containers from the source configuration to the target configuration. Simulation experiments have been conducted to compare the efficiency of loading operations before and after remarshaling. The results show that our remarshaling plan is really effective in increasing the efficiency of loading operation.

  • PDF

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Min K. A.;Lee K. H.;Han D. S.;Han G. J.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.311-316
    • /
    • 2004
  • LMTT (Linear Motor-based Transfer Technology) is a horizontal transfer system for the yard automation. which has been proposed to take the place qf AGV (Automated Guided Vehicle) in the maritime container terminal. the system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle mr. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research structural optimization for a mover of shuttle mr is performed to minimize the weight satisfying design criteria the objective function is set up as weight. On the contrary, design variable is considered as transverse, longitudinal and wheel beam's thickness and shape variable determining the dimension toward high direction and the constraints are the stresses.

  • PDF

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Lee K.-H.;Min K. A.;PARK H. W.;Han D. S.;Han G. J.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.415-420
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Technology) is the horizontal transfer system for yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, structural optimization for a mover of shuttle car is performed to minimize the weight satisfying design criteria. The objective function is set up as weight. On the contrary, the design variables are transverse, longitudinal and wheel beams' thicknesses and its height, and the constraints are considered as strength and stiffness.