• Title/Summary/Keyword: Automated software

Search Result 527, Processing Time 0.021 seconds

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.53-63
    • /
    • 2023
  • This study developed a cognitive impairment predictive model as one of the screening tests for preventing dementia in the elderly by using Automated Machine Learning(AutoML). We used 'Wearable lifelog data for high-risk dementia patients' of National Information Society Agency, then conducted using PyCaret 3.0.0 in the Google Colaboratory environment. This study analysis steps are as follows; first, selecting five models demonstrating excellent classification performance for the model development and lifelog data analysis. Next, using ensemble learning to integrate these models and assess their performance. It was found that Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, and Random Forest Classifier model showed high predictive performance in that order. This study findings, furthermore, emphasized on the the crucial importance of 'Average respiration per minute during sleep' and 'Average heart rate per minute during sleep' as the most critical feature variables for accurate predictions. Finally, these study results suggest that consideration of the possibility of using machine learning and lifelog as a means to more effectively manage and prevent cognitive impairment in the elderly.

Study on Automation of Comprehensive IT Asset Management (포괄적 IT 자산관리의 자동화에 관한 연구)

  • Wonseop Hwang;Daihwan Min;Junghwan Kim;Hanjin Lee
    • Journal of Information Technology Services
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The IT environment is changing due to the acceleration of digital transformation in enterprises and organizations. This expansion of the digital space makes centralized cybersecurity controls more difficult. For this reason, cyberattacks are increasing in frequency and severity and are becoming more sophisticated, such as ransomware and digital supply chain attacks. Even in large organizations with numerous security personnel and systems, security incidents continue to occur due to unmanaged and unknown threats and vulnerabilities to IT assets. It's time to move beyond the current focus on detecting and responding to security threats to managing the full range of cyber risks. This requires the implementation of asset Inventory for comprehensive management by collecting and integrating all IT assets of the enterprise and organization in a wide range. IT Asset Management(ITAM) systems exist to identify and manage various assets from a financial and administrative perspective. However, the asset information managed in this way is not complete, and there are problems with duplication of data. Also, it is insufficient to update of data-set, including Network Infrastructure, Active Directory, Virtualization Management, and Cloud Platforms. In this study, we, the researcher group propose a new framework for automated 'Comprehensive IT Asset Management(CITAM)' required for security operations by designing a process to automatically collect asset data-set. Such as the Hostname, IP, MAC address, Serial, OS, installed software information, last seen time, those are already distributed and stored in operating IT security systems. CITAM framwork could classify them into unique device units through analysis processes in term of aggregation, normalization, deduplication, validation, and integration.

Genetic diversity and phylogenetic relationship of Angus herds in Hungary and analyses of their production traits

  • Judit Marton;Ferenc Szabo;Attila Zsolnai;Istvan Anton
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.184-192
    • /
    • 2024
  • Objective: This study aims to investigate the genetic structure and characteristics of the Angus cattle population in Hungary. The survey was performed with the assistance of the Hungarian Hereford, Angus, Galloway Association (HHAGA). Methods: Genetic parameters of 1,369 animals from 16 Angus herds were analyzed using the genotyping results of 12 microsatellite markers with the aid of PowerMarker, Genalex, GDA-NT2021, and STRUCTURE software. Genotyping of DNA was performed using an automated genetic analyzer. Based on pairwise identity by state values of animals, the Python networkx 2.3 library was used for network analysis of the breed and to identify the central animals. Results: The observed numbers of alleles on the 12 loci under investigation ranged from 11 to 18. The average effective number of alleles was 3.201. The overall expected heterozygosity was 0.659 and the observed heterozygosity was 0.710. Four groups were detected among the 16 Angus herds. The breeders' information validated the grouping results and facilitated the comparison of birth weight, age at first calving, number of calves born and productive lifespan data between the four groups, revealing significant differences. We identified the central animals/herd of the Angus population in Hungary. The match of our group descriptions with the phenotypic data provided by the breeders further underscores the value of cooperation between breeders and researchers. Conclusion: The observation that significant differences in the measured traits occurred among the identified groups paves the way to further enhancement of breeding efficiency. Our findings have the potential to aid the development of new breeding strategies and help breeders keep the Angus populations in Hungary under genetic supervision. Based on our results the efficient use of an upcoming genomic selection can, in some cases, significantly improve birth weight, age at first calving, number of calves born and the productive lifespan of animals.

Exploring dietitians' views on digital nutrition educational tools in Malaysia: a qualitative study

  • Zahara Abdul Manaf;Mohd Hafiz Mohd Rosli;Norhayati Mohd Noor;Nor Aini Jamil;Fatin Hanani Mazri;Suzana Shahar
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.294-307
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Dietitians frequently use nutrition education tools to facilitate dietary counselling sessions. Nevertheless, these tools may require adaptation to keep pace with technological advancements. This study had a 2-fold purpose: first, to identify the types of nutrition education tools currently in use, identify their limitations, and explore dietitians' perspectives on the importance of these tools; second, to investigate the features that dietitians prefer in digital nutrition education tools. SUBJECTS/METHODS: A semi-structured face-to-face interview was conducted among 15 dietitians from selected public hospitals, primary care clinics, and teaching hospitals in Malaysia. Inductive thematic analysis of the responses was conducted using NVivo version 12 software. RESULTS: Most dietitians used physical education tools including the healthy plate model, pamphlets, food models, and flip charts. These tools were perceived as important as they facilitate the nutrition assessment process, deliver nutrition intervention, and are time efficient. However, dietitians described the current educational tools as impersonal, outdated, limited in availability due to financial constraints, unhandy, and difficult to visualise. Alternatively, they strongly favoured digital education tools that provided instant feedback, utilised an automated system, included a local food database, were user-friendly, developed by experts in the field, and seamlessly integrated into the healthcare system. CONCLUSION: Presently, although dietitians have a preference for digital educational tools, they heavily rely on physical nutrition education tools due to their availability despite the perception that these tools are outdated, impersonal, and inconvenient. Transitioning to digital dietary education tools could potentially address these issues.

Echocardiography Core Laboratory Validation of a Novel Vendor-Independent Web-Based Software for the Assessment of Left Ventricular Global Longitudinal Strain

  • Ernest Spitzer;Benjamin Camacho;Blaz Mrevlje;Hans-Jelle Brandendburg;Claire B. Ren
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.3
    • /
    • pp.135-141
    • /
    • 2023
  • BACKGROUND: Global longitudinal strain (GLS) is an accurate and reproducible parameter of left ventricular (LV) systolic function which has shown meaningful prognostic value. Fast, user-friendly, and accurate tools are required for its widespread implementation. We aim to compare a novel web-based tool with two established algorithms for strain analysis and test its reproducibility. METHODS: Thirty echocardiographic datasets with focused LV acquisitions were analyzed using three different semi-automated endocardial GLS algorithms by two readers. Analyses were repeated by one reader for the purpose of intra-observer variability. CAAS Qardia (Pie Medical Imaging) was compared with 2DCPA and AutoLV (TomTec). RESULTS: Mean GLS values were -15.0 ± 3.5% from Qardia, -15.3 ± 4.0% from 2DCPA, and -15.2 ± 3.8% from AutoLV. Mean GLS between Qardia and 2DCPA were not statistically different (p = 0.359), with a bias of -0.3%, limits of agreement (LOA) of 3.7%, and an intraclass correlation coefficient (ICC) of 0.88. Mean GLS between Qardia and AutoLV were not statistically different (p = 0.637), with a bias of -0.2%, LOA of 3.4%, and an ICC of 0.89. The coefficient of variation (CV) for intra-observer variability was 4.4% for Qardia, 8.4% 2DCPA, and 7.7% AutoLV. The CV for inter-observer variability was 4.5%, 8.1%, and 8.0%, respectively. CONCLUSIONS: In echocardiographic datasets of good image quality analyzed at an independent core laboratory using a standardized annotation method, a novel web-based tool for GLS analysis showed consistent results when compared with two algorithms of an established platform. Moreover, inter- and intra-observer reproducibility results were excellent.

Prognostic Value of Artificial Intelligence-Driven, Computed Tomography-Based, Volumetric Assessment of the Volume and Density of Muscle in Patients With Colon Cancer

  • Minsung Kim;Sang Min Lee;Il Tae Son;Taeyong Park;Bo Young Oh
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.849-859
    • /
    • 2023
  • Objective: The prognostic value of the volume and density of skeletal muscles in the abdominal waist of patients with colon cancer remains unclear. This study aimed to investigate the association between the automated computed tomography (CT)-based volume and density of the muscle in the abdominal waist and survival outcomes in patients with colon cancer. Materials and Methods: We retrospectively evaluated 474 patients with colon cancer who underwent surgery with curative intent between January 2010 and October 2017. Volumetric skeletal muscle index and muscular density were measured at the abdominal waist using artificial intelligence (AI)-based volumetric segmentation of body composition on preoperative pre-contrast CT images. Patients were grouped based on their skeletal muscle index (sarcopenia vs. not) and muscular density (myosteatosis vs. not) values and combinations (normal, sarcopenia alone, myosteatosis alone, and combined sarcopenia and myosteatosis). Postsurgical disease-free survival (DFS) and overall survival (OS) were analyzed using univariable and multivariable analyses, including multivariable Cox proportional hazard regression. Results: Univariable analysis showed that DFS and OS were significantly worse for the sarcopenia group than for the non-sarcopenia group (P = 0.044 and P = 0.003, respectively, by log-rank test) and for the myosteatosis group than for the non-myosteatosis group (P < 0.001 by log-rank test for all). In the multivariable analysis, the myosteatotic muscle type was associated with worse DFS (adjusted hazard ratio [aHR], 1.89 [95% confidence interval, 1.25-2.86]; P = 0.003) and OS (aHR, 1.90 [95% confidence interval, 1.84-3.04]; P = 0.008) than the normal muscle type. The combined muscle type showed worse OS than the normal muscle type (aHR, 1.95 [95% confidence interval, 1.08-3.54]; P = 0.027). Conclusion: Preoperative volumetric sarcopenia and myosteatosis, automatically assessed from pre-contrast CT scans using AI-based software, adversely affect survival outcomes in patients with colon cancer.

A Review on Detection of COVID-19 Cases from Medical Images Using Machine Learning-Based Approach

  • Noof Al-dieef;Shabana Habib
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2024
  • Background: The COVID-19 pandemic (the form of coronaviruses) developed at the end of 2019 and spread rapidly to almost every corner of the world. It has infected around 25,334,339 of the world population by the end of September 1, 2020 [1] . It has been spreading ever since, and the peak specific to every country has been rising and falling and does not seem to be over yet. Currently, the conventional RT-PCR testing is required to detect COVID-19, but the alternative method for data archiving purposes is certainly another choice for public departments to make. Researchers are trying to use medical images such as X-ray and Computed Tomography (CT) to easily diagnose the virus with the aid of Artificial Intelligence (AI)-based software. Method: This review paper provides an investigation of a newly emerging machine-learning method used to detect COVID-19 from X-ray images instead of using other methods of tests performed by medical experts. The facilities of computer vision enable us to develop an automated model that has clinical abilities of early detection of the disease. We have explored the researchers' focus on the modalities, images of datasets for use by the machine learning methods, and output metrics used to test the research in this field. Finally, the paper concludes by referring to the key problems posed by identifying COVID-19 using machine learning and future work studies. Result: This review's findings can be useful for public and private sectors to utilize the X-ray images and deployment of resources before the pandemic can reach its peaks, enabling the healthcare system with cushion time to bear the impact of the unfavorable circumstances of the pandemic is sure to cause

A Study on the Development of Adversarial Simulator for Network Vulnerability Analysis Based on Reinforcement Learning (강화학습 기반 네트워크 취약점 분석을 위한 적대적 시뮬레이터 개발 연구)

  • Jeongyoon Kim; Jongyoul Park;Sang Ho Oh
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • With the development of ICT and network, security management of IT infrastructure that has grown in size is becoming very difficult. Many companies and public institutions are having difficulty managing system and network security. In addition, as the complexity of hardware and software grows, it is becoming almost impossible for a person to manage all security. Therefore, AI is essential for network security management. However, since it is very dangerous to operate an attack model in a real network environment, cybersecurity emulation research was conducted through reinforcement learning by implementing a real-life network environment. To this end, this study applied reinforcement learning to the network environment, and as the learning progressed, the agent accurately identified the vulnerability of the network. When a network vulnerability is detected through AI, automated customized response becomes possible.

Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment

  • Kyu-Chong Lee;Kee-Hyoung Lee;Chang Ho Kang;Kyung-Sik Ahn;Lindsey Yoojin Chung;Jae-Joon Lee;Suk Joo Hong;Baek Hyun Kim;Euddeum Shim
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2017-2025
    • /
    • 2021
  • Objective: To evaluate the accuracy and clinical efficacy of a hybrid Greulich-Pyle (GP) and modified Tanner-Whitehouse (TW) artificial intelligence (AI) model for bone age assessment. Materials and Methods: A deep learning-based model was trained on an open dataset of multiple ethnicities. A total of 102 hand radiographs (51 male and 51 female; mean age ± standard deviation = 10.95 ± 2.37 years) from a single institution were selected for external validation. Three human experts performed bone age assessments based on the GP atlas to develop a reference standard. Two study radiologists performed bone age assessments with and without AI model assistance in two separate sessions, for which the reading time was recorded. The performance of the AI software was assessed by comparing the mean absolute difference between the AI-calculated bone age and the reference standard. The reading time was compared between reading with and without AI using a paired t test. Furthermore, the reliability between the two study radiologists' bone age assessments was assessed using intraclass correlation coefficients (ICCs), and the results were compared between reading with and without AI. Results: The bone ages assessed by the experts and the AI model were not significantly different (11.39 ± 2.74 years and 11.35 ± 2.76 years, respectively, p = 0.31). The mean absolute difference was 0.39 years (95% confidence interval, 0.33-0.45 years) between the automated AI assessment and the reference standard. The mean reading time of the two study radiologists was reduced from 54.29 to 35.37 seconds with AI model assistance (p < 0.001). The ICC of the two study radiologists slightly increased with AI model assistance (from 0.945 to 0.990). Conclusion: The proposed AI model was accurate for assessing bone age. Furthermore, this model appeared to enhance the clinical efficacy by reducing the reading time and improving the inter-observer reliability.