• Title/Summary/Keyword: Automated software

Search Result 525, Processing Time 0.025 seconds

Deep Learning Models for Autonomous Crack Detection System (자동화 균열 탐지 시스템을 위한 딥러닝 모델에 관한 연구)

  • Ji, HongGeun;Kim, Jina;Hwang, Syjung;Kim, Dogun;Park, Eunil;Kim, Young Seok;Ryu, Seung Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.161-168
    • /
    • 2021
  • Cracks affect the robustness of infrastructures such as buildings, bridge, pavement, and pipelines. This paper presents an automated crack detection system which detect cracks in diverse surfaces. We first constructed the combined crack dataset, consists of multiple crack datasets in diverse domains presented in prior studies. Then, state-of-the-art deep learning models in computer vision tasks including VGG, ResNet, WideResNet, ResNeXt, DenseNet, and EfficientNet, were used to validate the performance of crack detection. We divided the combined dataset into train (80%) and test set (20%) to evaluate the employed models. DenseNet121 showed the highest accuracy at 96.20% with relatively low number of parameters compared to other models. Based on the validation procedures of the advanced deep learning models in crack detection task, we shed light on the cost-effective automated crack detection system which can be applied to different surfaces and structures with low computing resources.

Improvement and Implementation of Unmanned Traffic Enforcement Equipment (무인교통단속장비 개선 및 구현)

  • Lee, Sang-O;Lee, Choul-Ki;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.42-56
    • /
    • 2022
  • The thesis is automated traffic control equipment system aims to improve. Areas where improvement is needed about the existing automated traffic control equipment by applying the latest technology and to improve the things that can be derived. Reflecting the derived improvements, we intend to present a plan for the design and implementation of a new unmanned traffic control device. The main improvements were designed to change the housing material of the unmanned traffic control equipment, simplify the configuration of the equipment, reduce the weight of the equipment, and change the purpose of the software. In order to evaluate the objective performance of the improved unmanned traffic control equipment through this study, it was requested to a public certification authority. The reliability of the equipment was secured through KC certification and durability test. It is intended to present the feasibility of securing the marketability of the unmanned traffic control equipment by comparing and evaluating the construction period and installation cost with the existing unmanned traffic control equipment.

Automated Bacterial Cell Counting Method in a Droplet Using ImageJ (이미지 분석 프로그램을 이용한 액적 내 세포 계수 방법)

  • Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.247-257
    • /
    • 2023
  • Precise counting of cell number stands in important position within clinical and research laboratories. Conventional methods such as hemocytometer, migration/invasion assay, or automated cell counters have limited in analytical time, cost, and accuracy., which needs an alternative way with time-efficient in-situ approach to broaden the application avenue. Here, we present simple coding-based cell counting method using image analysis tool, freely available image software (ImageJ). Firstly, we encapsulated RFP-expressing bacteria in a droplet using microfluidic device and automatically performed fluorescence image-based analysis for the quantification of cell numbers. Also, time-lapse images were captured for tracking the change of cell numbers in a droplet containing different concentrations of antibiotics. This study confirms that our approach is approximately 15 times faster and provides more accurate number of cells in a droplet than the external analysis program method. We envision that it can be used to the development of high-throughput image-based cell counting analysis.

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Semantic Search System using Ontology-based Inference (온톨로지기반 추론을 이용한 시맨틱 검색 시스템)

  • Ha Sang-Bum;Park Yong-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.202-214
    • /
    • 2005
  • The semantic web is the web paradigm that represents not general link of documents but semantics and relation of document. In addition it enables software agents to understand semantics of documents. We propose a semantic search based on inference with ontologies, which has the following characteristics. First, our search engine enables retrieval using explicit ontologies to reason though a search keyword is different from that of documents. Second, although the concept of two ontologies does not match exactly, can be found out similar results from a rule based translator and ontological reasoning. Third, our approach enables search engine to increase accuracy and precision by using explicit ontologies to reason about meanings of documents rather than guessing meanings of documents just by keyword. Fourth, domain ontology enables users to use more detailed queries based on ontology-based automated query generator that has search area and accuracy similar to NLP. Fifth, it enables agents to do automated search not only documents with keyword but also user-preferable information and knowledge from ontologies. It can perform search more accurately than current retrieval systems which use query to databases or keyword matching. We demonstrate our system, which use ontologies and inference based on explicit ontologies, can perform better than keyword matching approach .

A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model (AI모델을 적용한 군 경계체계 지능화 방안)

  • Changhee Han;Halim Ku;Pokki Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2023
  • The ROK military faces a significant challenge in its vigilance mission due to demographic problems, particularly the current aging population and population cliff. This study demonstrates the crucial role of the 4th industrial revolution and its core artificial intelligence algorithm in maximizing work efficiency within the Command&Control room by mechanizing simple tasks. To achieve a fully developed military surveillance system, we have chosen multi-object tracking (MOT) technology as an essential artificial intelligence component, aligning with our goal of an intelligent and automated surveillance system. Additionally, we have prioritized data visualization and user interface to ensure system accessibility and efficiency. These complementary elements come together to form a cohesive software application. The CCTV video data for this study was collected from the CCTV cameras installed at the 1st and 2nd main gates of the 00 unit, with the cooperation by Command&Control room. Experimental results indicate that an intelligent and automated surveillance system enables the delivery of more information to the operators in the room. However, it is important to acknowledge the limitations of the developed software system in this study. By highlighting these limitations, we can present the future direction for the development of military surveillance systems.

A Survey on Current Situation of Computer System Utilization for Poultry Farm Management (양계농가 전산화 실태에 관한 조사 연구)

  • 최연호;이상진;신영수
    • Korean Journal of Poultry Science
    • /
    • v.23 no.4
    • /
    • pp.209-219
    • /
    • 1996
  • This research was carried out to get the basic information on the current situation of personal computer utilization for poultry farm management, and the results obtained could be used in developing of the software system for the poultry farm management. Survey method by interview and mail was adopted to carry out the research, and the total number of data used to statistical analyses was k6 poultry farmers. 1. The ratio of the poultry farmers who had the personal computer(P/C) was about 25%, and the most of the layer farmers from age 30 to 40 who manage the flock size 20,000 or above had the P/C. 2. About 70% of the farmers who had P/C have bought the system after 1993, and 83% of those farmers had the P/C-486 or above level system. They bought the P/C with intent to apply it to farm management(39%) and education for children(31%). 3. About 50% of the farmers who had P/C obtained the relevant knowledge for operating computer system by themselves, and the 33% of the P/C-possessed farmers used P/C for word-processor. 4. About 35% of the farmers who had P/C applied their system to analyse the management analyses, and the sarne ratio of the farmers answered that they didn't apply the system to their farm management. 5. About 25% of the farmers who had P/C used package software, and the company which installed the automated cage system offered the software. 6. Most of the farmers considered the computerization of the farm management positively, and they answered that they will apply P/C to their management actively from now on. 7. About 56% of the farmers didn't think that they had sufficient knowledge for operating computer system, and a quarter of them pointed that the difficulty of the buying software for poultry farm management was the most biggest problem to spread out the computerization in the poultry farm. 8. Most of the poultry farmers didn't buy P/C because they didn't have the relevant knowledge for computer system, but they wanted to learn basic knowledge for computer, and they had the intention to apply computer to their management positively. In order to expand the computerization for poultry farm management, appropriate education system for the farmers from age 30 to 40 who manage the flock size 20,000 or above and the development of the software that could be applied to poultry farm management on the spot efficiently should be made.

  • PDF

A Study on a Development of Automated Measurement Sensor for Forest Fire Surface Fuel Moistures (산불연료습도 자동화 측정센서 개발에 관한 연구)

  • YEOM, Chan-Ho;LEE, Si-Young;PARK, Houng-Sek;WON, Myoung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.917-935
    • /
    • 2020
  • In this study, an automated sensor to measure forest fire surface fuel moistures was developed to predict changes in the moisture content and risk of forest fire surface fuel, which was indicators of forest fire occurrence and spread risk. This measurement sensor was a method of automatically calculating the moisture content of forest fire surface fuel by electric resistance. The proxy of forest fire surface fuel used in this sensor is pine (50 cm long, 1.5 cm in diameter), and the relationship between moisture content and electrical resistance, R(R:Electrical resistance)=2E(E:Exponent of 10)+13X(X:Moisture content)-9.705(R2=0.947) was developed. In addition, using this, the software and case of the automated measurement sensor for forest fire surface fuel moisture were designed to produce a prototype, and the suitability (R2=0.824) was confirmed by performing field monitoring verification in the forest. The results of this study would contribute to develop technologies that can predict the occurrence, spread and intensity of forest fires, and are expected to be used as basic data for advanced forest fire risk forecasting technologies.

Ontology-based Automated Metadata Generation Considering Semantic Ambiguity (의미 중의성을 고려한 온톨로지 기반 메타데이타의 자동 생성)

  • Choi, Jung-Hwa;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.986-998
    • /
    • 2006
  • There has been an increasing necessity of Semantic Web-based metadata that helps computers efficiently understand and manage an information increased with the growth of Internet. However, it seems inevitable to face some semantically ambiguous information when metadata is generated. Therefore, we need a solution to this problem. This paper proposes a new method for automated metadata generation with the help of a concept of class, in which some ambiguous words imbedded in information such as documents are semantically more related to others, by using probability model of consequent words. We considers ambiguities among defined concepts in ontology and uses the Hidden Markov Model to be aware of part of a named entity. First of all, we constrict a Markov Models a better understanding of the named entity of each class defined in ontology. Next, we generate the appropriate context from a text to understand the meaning of a semantically ambiguous word and solve the problem of ambiguities during generating metadata by searching the optimized the Markov Model corresponding to the sequence of words included in the context. We experiment with seven semantically ambiguous words that are extracted from computer science thesis. The experimental result demonstrates successful performance, the accuracy improved by about 18%, compared with SemTag, which has been known as an effective application for assigning a specific meaning to an ambiguous word based on its context.

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.