• 제목/요약/키워드: Automated fire detection system

검색결과 3건 처리시간 0.019초

화재방호 설비 설계 자동화를 위한 선행연구 및 기술 분석 (Literature Review and Current Trends of Automated Design for Fire Protection Facilities)

  • 홍성협;최두찬;이광호
    • 토지주택연구
    • /
    • 제11권4호
    • /
    • pp.99-104
    • /
    • 2020
  • This paper presents the recent research developments identified through a review of literature on the application of artificial intelligence in developing automated designs of fire protection facilities. The literature review covered research related to image recognition and applicable neural networks. Firstly, it was found that convolutional neural network (CNN) may be applied to the development of automating the design of fire protection facilities. It requires a high level of object detection accuracy necessitating the classification of each object making up the image. Secondly, to ensure accurate object detection and building information, the data need to be pulled from architectural drawings. Thirdly, by applying image recognition and classification, this can be done by extracting wall and surface information using dimension lines and pixels. All combined, the current review of literature strongly indicates that it is possible to develop automated designs for fire protection utilizing artificial intelligence.

국내·외 비화재보의 통계 및 관리체계에 관한 연구 (Statistics and Management Systems of Unwanted Domestic and Foreign Fire Alarms)

  • 황의홍;이성은;최돈묵
    • 한국화재소방학회논문지
    • /
    • 제34권2호
    • /
    • pp.30-40
    • /
    • 2020
  • 화재 및 재난에서 신속·정확한 경보는 피해규모의 최소화와 인명 피난의 성공과 직결된다. 그러나 자동화재탐지설비의 비화재보로 인해 119서비스의 오인출동의 수가 증가하고 있다. 이는 건물의 관계인의 안전 불감증과 소방의 인력낭비를 초래한다. 따라서 본 연구에서는 국외(미국, 영국) 및 국내의 비화재보에 대한 통계DB 및 문헌을 확인하고, 비화재보의 관리체계에 대해서 비교·분석하여 비화재보에 대한 통계 및 관리체계의 문제점을 확인하였다.

딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발 (Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels)

  • 이규범;신휴성;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.1161-1175
    • /
    • 2018
  • 도로 터널의 주행은 시야의 제한으로 인해 유고상황이 발생한 후 2차 대형사고로 이어지기 쉽다. 따라서, 유고상황 발생 즉시, 상황을 자동 감지하여 신속히 초동대응이 이루어 져야 한다. 유고상황을 자동으로 감시할 수 있는 시스템은 기존에도 존재했지만, 폐합된 터널 내 열악 환경에서 촬영되는 CCTV 영상의 질적 한계로 인해 유고상황을 제대로 감지하지 못했다. 이러한 한계를 극복하기 위해 딥러닝을 기반으로 한 터널 영상유고 자동 감지 시스템을 개발하였으며, 지난 2017년 11월 딥러닝 객체 인식 네트워크에 대한 연구를 진행하여 우수한 객체인식 성능을 보인바 있다. 그러나 객체인식은 정지영상 기반으로 수행되므로 이동체의 이동방향과 속도를 알 수 없어, 정차 및 역주행 등 이동체의 이동특성에 따른 유고상황을 판단하기 힘들다. 본 논문에서는 객체인식으로 감지된 이동체의 객체정보를 기반으로 별도의 객체추적기법을 적용하여 이동체의 이동 특성을 자동으로 추적하는 프로세스를 제안하였다. 이를 통해 얻어진 이동체의 이동 방향과 속도 정보를 기반으로 정차 및 역주행을 판별하는 알고리즘을 개발하여 딥러닝 기반 터널 영상유고 자동감지 시스템을 완성하였다. 또한, 유고상황이 포함된 영상들에 대하여 유고상황 감지성능을 검증하였다. 검증 실험 결과, 화재, 정차와 역주행 상황에 대해서는 모두 100% 수준으로 완전한 유고상황 감지성능을 보였으나, 보행자 발생 상황에서는 78.5%로 상대적으로 낮은 성능을 보였다. 하지만, 향후 지속적인 영상유고 영상 빅데이터를 확장해 나가고 주기적인 재학습을 통해 유고상황에 대한 인지성능을 향상시켜 나갈 수 있을 것이다.