• Title/Summary/Keyword: Automated driving

Search Result 223, Processing Time 0.017 seconds

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.

A Study on the Introduction and Application of Core Technologies of Smart Motor-Graders for Automated Road Construction (도로 시공 자동화를 위한 스마트 모터 그레이더의 구성 기술 소개 및 적용에 관한 연구)

  • Park, Hyune-Jun;Lee, Sang-Min;Song, Chang-Heon;Cho, Jung-Woo;Oh, Joo-Young
    • Tunnel and Underground Space
    • /
    • v.32 no.5
    • /
    • pp.298-311
    • /
    • 2022
  • Some problems, such as aging workers, a decreased population due to a low birth rate, and shortage of skilled workers, are rising in construction sites. Therefore research for smart construction technology that can be improved for productivity, safety, and quality has been recently developed with government support by replacing traditional construction technology with advanced digital technology. In particular, the motor grader that mainly performs road surface flattening is a construction machine that requires the application of automation technology for repetitive construction. It is predicted that the construction period will be shortened if the construction automation technology such as trajectory tracking, automation work, and remote control technology is applied. In this study, we introduce the hardware and software architecture of the smart motor grader to apply unmanned and automation technology and then analyze the traditional earthwork method of the motor grader. We suggested the application plans for the path pattern and blade control method of the smart motor grader based on this. In addition, we verified the performance of waypoint-based path-following depending on scenarios and the blade control's performance through tests.

Design of Algorithm for Collision Avoidance with VRU Using V2X Information (V2X 정보를 활용한 VRU 충돌 회피 알고리즘 개발)

  • Jang, Seono;Lee, Sangyeop;Park, Kihong;Shin, Jaekon;Eom, Sungwook;Cho, Sungwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.240-257
    • /
    • 2022
  • Autonomous vehicles use various local sensors such as camera, radar, and lidar to perceive the surrounding environment. However, it is difficult to predict the movement of vulnerable road users using only local sensors that are subject to limits in cognitive range. This is true especially when these users are blocked from view by obstacles. Hence, this paper developed an algorithm for collision avoidance with VRU using V2X information. The main purpose of this collision avoidance system is to overcome the limitations of the local sensors. The algorithm first evaluates the risk of collision, based on the current driving condition and the V2X information of the VRU. Subsequently, the algorithm takes one of four evasive actions; steering, braking, steering after braking, and braking after steering. A simulation was performed under various conditions. The results of the simulation confirmed that the algorithm could significantly improve the performance of the collision avoidance system while securing vehicle stability during evasive maneuvers.