• Title/Summary/Keyword: Automated Knowledge Acquisition

Search Result 12, Processing Time 0.024 seconds

An Automated Knowledge Acquisition Tool Based on the Inferential Modeling Technique

  • Chan, Christine W.;Nguyen, Hanh H.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1165-1168
    • /
    • 2002
  • Knowledge acquisition is the process that extracts the required knowledge from available sources, such as experts, textbooks and databases, for incorporation into a knowledge-based system. Knowledge acquisition is described as the first step in building expert systems and a major bottleneck in the efficient development and application of effective knowledge based expert systems. One cause of the problem is that the process of human reasoning we need to understand for knowledge-based system development is not available for direct observation. Moreover, the expertise of interest is typically not reportable due to the compilation of knowledge which results from extensive practice in a domain of problem solving activity. This is also a problem of modeling knowledge, which has been described as not a problem of accessing and translating what is known, but the familiar scientific and engineering problem of formalizing models for the first time. And this formalization process is especially difficult for knowledge engineers who are often faced with the difficult task of creating a knowledge model of a domain unfamiliar to them. In this paper, we propose an automated knowledge acquisition tool which is based on an implementation of the Inferential Modeling Technique. The Inferential Modeling Technique is derived from the Inferential Model which is a domain-independent categorization of knowledge types and inferences [Chan 1992]. The model can serve as a template of the types of knowledge in a knowledge model of any domain.

  • PDF

Autonomous Knowledge Acquisition Methodology using Knowledge Workers' Context Information : Focused on the Acquisition of Dialogue-Based Knowledge for the Next Generation Knowledge Management Systems (지식근로자의 상황정보를 이용한 자율적 지식획득 방법론 : 대화형 지식의 획득을 위한 차세대형 지식경영시스템)

  • Yoo, Keedong
    • Knowledge Management Research
    • /
    • v.9 no.4
    • /
    • pp.65-75
    • /
    • 2008
  • Knowledge workers' workload to register knowledge can cause quality defects in the quality as well as the quantity of knowledge that must be accumulated in a knowledge management system(KMS). To enhance the availability of a KMS by acquiring more quality-guaranteed knowledge, autonomous knowledge acquisition which outdoes the automated acquisition must be initiated. Adopting the capabilities of context-awareness and inference in the field of context-aware computing, this paper intends to autonomously identify and acquire knowledge from knowledge workers' daily lives. Based on knowledge workers' context information, such as location, identification, schedule, etc, a methodology to monitor, sense, and gather knowledge that resides in their ordinary discussions is proposed. Also, a prototype systems of the context-based knowledge acquisition system(CKAS), which autonomously dictates, analyzes, and stores dialogue-based knowledge is introduced to prove the validity of the proposed concepts. This paper's methodology and prototype system can support relieving knowledge workers' burden to manually register knowledge, and hence provide a way to accomplish the goal of knowledge management, efficient and effective management of qualified knowledge.

  • PDF

Application Suite for Autonomous Management and Service of Verbal Knowledge (음성형 지식의 자율적 관리 및 서비스를 위한 애플리케이션 스위트 개발)

  • Yoo, Keedong
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.79-90
    • /
    • 2016
  • Autonomous knowledge service, a fully-automated and pervasive service for knowledge acquisition and support based on the power of recent ITs is gaining tremendous interest more and more, as not only the level of users' intelligence increases but also the maturity of IT infrastructure improves. Conventional approaches of knowledge service, however, could not satisfy users because they usually provided undesired knowledge which had been acquired without considering users' want. In other words, knowledge acquisition and distribution were separately performed. This research, therefore, suggests an amended autonomous knowledge service framework by fully-automating the whole phases of knowledge life cycle, from knowledge acquisition to distribution. ASKs, the prototype system of this research, is also implemented by defining and specifying component technologies which constituently compose suggested framework. More user-friendly and applicable way of knowledge service will be derived and facilitated through this research.

Company Name Discrimination in Tweets using Topic Signatures Extracted from News Corpus

  • Hong, Beomseok;Kim, Yanggon;Lee, Sang Ho
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.128-136
    • /
    • 2016
  • It is impossible for any human being to analyze the more than 500 million tweets that are generated per day. Lexical ambiguities on Twitter make it difficult to retrieve the desired data and relevant topics. Most of the solutions for the word sense disambiguation problem rely on knowledge base systems. Unfortunately, it is expensive and time-consuming to manually create a knowledge base system, resulting in a knowledge acquisition bottleneck. To solve the knowledge-acquisition bottleneck, a topic signature is used to disambiguate words. In this paper, we evaluate the effectiveness of various features of newspapers on the topic signature extraction for word sense discrimination in tweets. Based on our results, topic signatures obtained from a snippet feature exhibit higher accuracy in discriminating company names than those from the article body. We conclude that topic signatures extracted from news articles improve the accuracy of word sense discrimination in the automated analysis of tweets.

Efficient Knowledge Base Construction Mechanism Based on Knowledge Map and Database Metaphor

  • Kim, Jin-Sung;Lee, Kun-Chang;Chung, Nam-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.9-12
    • /
    • 2004
  • Developing an efficient knowledge base construction mechanism as an input method for expert systems (ES) development is of extreme importance due to the fact that an input process takes a lot of time and cost in constructing an ES. Most ES require experts to explicit their tacit knowledge into a form of explicit knowledge base with a full sentence. In addition, the explicit knowledge bases were composed of strict grammar and keywords. To overcome these limitations, this paper proposes a knowledge conceptualization and construction mechanism for automated knowledge acquisition, allowing an efficient decision. To this purpose, we extended traditional knowledge map (KM) construction process to dynamic knowledge map (DKM) and combined this algorithm with relational database (RDB). In the experiment section, we used medical data to show the efficiency of our proposed mechanism. Each rule in the DKM was characterized by the name of disease, clinical attributes and their treatments. Experimental results with various disease show that the proposed system is superior in terms of understanding and convenience of use.

  • PDF

A Knowledge-based Question-Answering System: With A View To Constructing A Fact Database (지식기반 (Knowledge-based) 질의응답시스템: 사실 자료 (Faet Database)구축을 중심으로)

  • 신효필
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • In this paper, I describe a knowledge-based question-answering system and significance of the system with a view to constructing a fact database. The knowledge-based system takes advantage of existing NLP-resources such as conceptual structures of ontologies along with morphotogical, syntactic and semantic analysis. The use of conceptual structures allows us to select right answers through inferences basically made by expansions of concepts. However, the work of constructing factual knowledge requires a great amount of acquisition time in large-scale applications because of the nature of human interference. This is why the procedure of acquiring factual knowledge cannot be fully automated. Apart from efficiency considerations. the knowledge-based system deserves serious consideration, I point out benefits of the system and describe the whole procedure of building the system in terms of a fact database.

  • PDF

The Effect of firm-specifics on forecast accuracy: The case of IPO firms in Korea (코스닥 신규상장 기업의 특성에 따른 재무분석가의 이익예측력에 관한 연구)

  • Jeon, Seong il;Lee, Ki se
    • Knowledge Management Research
    • /
    • v.13 no.5
    • /
    • pp.1-13
    • /
    • 2012
  • This study investigates whether firm-specifics affect forecast accuracy using a sample of IPO firms in Korea. The forecasts accuracy can be differentiated depending on firm specifics. This study uses the foreign investor, intangible asset and patents as firm specifics. The analysts are divided into two groups by firm-specifies(foreign investors ratio of low and high, intangible asset ratio of low and high, patents of acquisition) and also examine the degree of analysts's forecast accuracy over the two groups. and examined the degree of the analysts' forecast accuracy over the two groups. The sample is composed of 460 IPO (Initial Public Offering) firms listed on the KOSDAQ (Korean Securities Dealers Automated Quotations) for the period from 2001 to 2009. The analysts' forecast accuracy is much higher in the group of high foreign investor but is lower in the group of high intangible assets and patents. Also, the group of high foreign investors respectively interacts with group of high intangible assets ratio and group of patents of acquisition. In result, The analysts' forecast accuracy is higher because foreign investor is decreased information asymmetry. This study compares suggests that patents may be helpful for predicting forecast accuracy.

  • PDF

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

Speeding up the KLT Tracker for Real-time Image Georeferencing using GPS/INS Data

  • Tanathong, Supannee;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.629-644
    • /
    • 2010
  • A real-time image georeferencing system requires all inputs to be determined in real-time. The intrinsic camera parameters can be identified in advance from a camera calibration process while other control information can be derived instantaneously from real-time GPS/INS data. The bottleneck process is tie point acquisition since manual operations will be definitely obstacles for real-time system while the existing extraction methods are not fast enough. In this paper, we present a fast-and-automated image matching technique based on the KLT tracker to obtain a set of tie-points in real-time. The proposed work accelerates the KLT tracker by supplying the initial guessed tie-points computed using the GPS/INS data. Originally, the KLT only works effectively when the displacement between tie-points is small. To drive an automated solution, this paper suggests an appropriate number of depth levels for multi-resolution tracking under large displacement using the knowledge of uncertainties the GPS/INS data measurements. The experimental results show that our suggested depth levels is promising and the proposed work can obtain tie-points faster than the ordinary KLT by 13% with no less accuracy. This promising result suggests that our proposed algorithm can be effectively integrated into the real-time image georeferencing for further developing a real-time surveillance application.

Implementation of Automated Motor Fault Diagnosis System Using GA-based Fuzzy Model (유전 알고리즘기반 퍼지 모델을 이용한 모터 고장 진단 자동화 시스템의 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.24-26
    • /
    • 2005
  • At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.

  • PDF