• Title/Summary/Keyword: Automata Technique

Search Result 39, Processing Time 0.024 seconds

The Effect of Spatial Scale and Resolution in the Prediction of Future Land Use using CA-Markov Technique (면적규모 및 공간해상도가 CA-Markov 기법에 의한 미래 토지이용 예측결과에 미치는 영향)

  • Kim, Seong-Joon;Lee, Yong-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.58-70
    • /
    • 2007
  • The purpose of this study is to predict future land use using Landsat images through assessing the effect of spatial scale and resolution in applying CA (Cellular Automata)-Markov technique. The scale for areas ranging from $31.26km^2$ to $84.48km^2$ showed about 11% difference of overall accuracies. Among the five spatial resolutions (10m, 30m, 50m, 100m, 150m), 30m resolution showed the best result in the prediction of area and spatial distribution of urban areas. Based on the results, the 2004 land use by CA-Markov was predicted using 1996 and 2001 land use data and compared with the 2004 land use by maximum likelihood classification. After that, future land uses of 2030, 2060 and 2090 were predicted and the results showed a tendency of gradual increase in urban area and high decrease in forest area.

  • PDF

Modeling the Spatial Dynamics of Urban Green Spaces in Daegu with a CA-Markov Model (CA-Markov 모형을 이용한 대구시 녹지의 공간적 변화 모델링)

  • Seo, Hyun-Jin;Jun, Byong-Woon
    • Journal of the Korean Geographical Society
    • /
    • v.52 no.1
    • /
    • pp.123-141
    • /
    • 2017
  • This study predicted urban green spaces for 2020 based on two scenarios keeping or freeing the green-belt in the Daegu metropolitan city using a hybrid Cellular Automata(CA)-Markov model and analyzed the spatial dynamics of urban green spaces between 2009 and 2020 using a land cover change detection technique and spatial metrics. Markov chain analysis was employed to derive the transition probability for projecting land cover change into the future for 2020 based on two land cover maps in 1998 and 2009 provided by the Ministry of Environment. Multi-criteria evaluation(MCE) was adopted to develop seven suitability maps which were empirically derived in relation to the six restriction factors underlying the land cover change between the years 1998 and 2009. A hybrid CA-Markov model was then implemented to predict the land cover change over an 11 year period to 2020 based on two scenarios keeping or freeing the green-belt. The projected land cover for 2009 was cross-validated with the actual land cover in 2009 using Kappa statistics. Results show that urban green spaces will be remarkably fragmented in the suburban areas such as Dalseong-gun, Seongseo, Ansim and Chilgok in the year 2020 if the Daegu metropolitan city keeps its urbanization at current pace and in case of keeping the green-belt. In case of freeing the green-belt, urban green spaces will be fragmented on the fringes of the green-belt. It is thus required to monitor urban green spaces systematically considering the spatial change patterns identified by this study for sustainably managing them in the Daegu metropolitan city in the near future.

  • PDF

A Filtering Technique of Streaming XML Data based Postfix Sharing for Partial matching Path Queries (부분매칭 경로질의를 위한 포스트픽스 공유에 기반한 스트리밍 XML 데이타 필터링 기법)

  • Park Seog;Kim Young-Soo
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.138-149
    • /
    • 2006
  • As the environment with sensor network and ubiquitous computing is emerged, there are many demands of handling continuous, fast data such as streaming data. As work about streaming data has begun, work about management of streaming data in Publish-Subscribe system is started. The recent emergence of XML as a standard for information exchange on Internet has led to more interest in Publish - Subscribe system. A filtering technique of streaming XML data in the existing Publish- Subscribe system is using some schemes based on automata and YFilter, which is one of filtering techniques, is very popular. YFilter exploits commonality among path queries by sharing the common prefixes of the paths so that they are processed at most one and that is using the top-down approach. However, because partial matching path queries interrupt the common prefix sharing and don't calculate from root, throughput of YFilter decreases. So we use sharing of commonality among path queries with the common postfixes of the paths and use the bottom-up approach instead of the top-down approach. This filtering technique is called as PoSFilter. And we verify this technique through comparing with YFilter about throughput.

Systematic Evaluation of Fault Trees using Real-Time Model Checker (실시간 모델 체커를 이용한 풀트 트리의 체계적 검증)

  • 지은경;차성덕;손한성;유준범;구서룡;성풍현
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.860-872
    • /
    • 2002
  • Fault tree analysis is the most widely used saftly analysis technique in industry. However, the analysis is often applied manually, and there is no systematic and automated approach available to validate the analysis result. In this paper, we demonstrate that a real-time model checker UPPAAL is useful in formally specifying the required behavior of safety-critical software and to validate the accuracy of manually constructed fault trees. Functional requirements for emergency shutdown software for a nuclear power plant, named Wolsung SDS2, are used as an example. Fault trees were initially developed by a group of graduate students who possess detailed knowledge of Wolsung SDS2 and are familiar with safety analysis techniques including fault tree analysis. Functional requirements were manually translated in timed automata format accepted by UPPAAL, and the model checking was applied using property specifications to evaluate the correctness of the fault trees. Our application demonstrated that UPPAAL was able to detect subtle flaws or ambiguities present in fault trees. Therefore, we conclude that the proposed approach is useful in augmenting fault tree analysis.

A Study for Determining the Best Number of Clusters on Temporal Data (Temporal 데이터의 최적의 클러스터 수 결정에 관한 연구)

  • Cho Young-Hee;Lee Gye-Sung;Jeon Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • A clustering method for temporal data takes a model-based approach. This uses automata based model for each cluster. It is necessary to construct global models for a set of data in order to elicit individual models for the cluster. The preparation for building individual models is completed by determining the number of clusters inherent in the data set. In this paper, BIC(Bayesian Information Criterion) approximation is used to determine the number clusters and confirmed its applicability. A search technique to improve efficiency is also suggested by analyzing the relationship between data size and BIC values. A number of experiments have been performed to check its validity using artificially generated data sets. BIC approximation measure has been confirmed that it suggests best number of clusters through experiments provided that the number of data is relatively large.

  • PDF

Evaluation of Future Climate Change Impact on Streamflow of Gyeongancheon Watershed Using SLURP Hydrological Model

  • Ahn, So-Ra;Ha, Rim;Lee, Yong-Jun;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.45-55
    • /
    • 2008
  • The impact on streamflow and groundwater recharge considering future potential climate and land use change was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for a $260.4km^2$ which has been continuously urbanized during the past couple of decades. The model was calibrated and validated with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.8 to 0.7 and 0.7 to 0.5, respectively. The CCCma CGCM2 data by two SRES (Special Report on Emissions Scenarios) climate change scenarios (A2 and B2) of the IPCC (Intergovemmental Panel on Climate Change) were adopted and the future weather data was downscaled by Delta Change Method using 30 years (1977 - 2006, baseline period) weather data. The future land uses were predicted by CA (Cellular Automata)-Markov technique using the time series land use data of Landsat images. The future land uses showed that the forest and paddy area decreased 10.8 % and 6.2 % respectively while the urban area increased 14.2 %. For the future vegetation cover information, a linear regression between monthly NDVI (Normalized Difference Vegetation Index) from NOAA/AVHRR images and monthly mean temperature using five years (1998 - 2002) data was derived for each land use class. The future highest NDVI value was 0.61 while the current highest NDVI value was 0.52. The model results showed that the future predicted runoff ratio ranged from 46 % to 48 % while the present runoff ratio was 59 %. On the other hand, the impact on runoff ratio by land use change showed about 3 % increase comparing with the present land use condition. The streamflow and groundwater recharge was big decrease in the future.

Assessment of the Contribution of Weather, Vegetation, Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (I) - Preparation of Input Data for the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지유역과 하천유역에 미치는 기여도 평가(I) - 모형의 입력자료 구축 -)

  • Park, Geun-Ae;Lee, Yong-Jun;Shin, Hyung-Jin;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.107-120
    • /
    • 2010
  • The effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water was assessed using the SLURP (semi-distributed land use-based runoff process), a physically based hydrological model. The fundamental input data (elevation, meteorological data, land use, soil, vegetation) was collected to calibrate and validate of the SLURP model for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang and Gosam) located in Anseongcheon watershed. Then, the CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year, m ms, m5ms and 2amms was downscaled by Change Factor method through bias-correction using 3m years (1977-2006) weather data of 3 meteorological stations of the watershed. In addition, the future land uses were predicted by modified CA (cellular automata)-Markov technique using the time series land use data fromFactosat images. Also the future vegetation cover information was predicted and considered by the linear regression between monthly NDVI (normalized difference vegetation index) from NOAA AVHRR images and monthly mean temperature using eight years (1998-2006) data.

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.

Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed (CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Bae, Deg-Hyo;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.453-466
    • /
    • 2006
  • The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$\sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$\sim$5%.