• Title/Summary/Keyword: Autogenous Bone

Search Result 341, Processing Time 0.028 seconds

Development of autogenous teeth bone graft material and clinical evaluation (자가치아골이식재를 이용한 골이식술의 임상적 평가)

  • Kim, Young-Kyun
    • The Journal of the Korean dental association
    • /
    • v.49 no.3
    • /
    • pp.159-169
    • /
    • 2011
  • The author have been conducting research on the development of biomaterials using human teeth since 1993, and we recently reported the results of several of our advanced studies. Based on previous studies, new bone graft material using autogenous tooth(AutoBT) was developed. The author performed implant placement combined with GBR and sinus bone graft using AutoBT during the period of June 2009 to September 2009. During the postsurgical healing period, clinical and radiological evaluations were performed. For patients who consented to histological testing, tissue samples were obtained and histological examination was performed two months and four months after GBR and four months after sinus bone graft. Serious complications pertinent to bone graft materials were not observed, and it was shown that the level of the crestal bone in the vicinity of implants was relatively well maintained. In histologic examination after two months and four months, favorable new bone formation was observed.

The Effect of Autogenous Demineralized Dentin Matrix and Interleukin-6 on bone Regeneration

  • Jang, Won Seok;Kim, Min Gu;Hwang, Dae Suk;Kim, Gyoo Cheon;Kim, Uk Kyu
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.203-211
    • /
    • 2017
  • The aim of this study was to evaluate the role of demineralized and particulate autogenous tooth, and interleukin-6 in bone regeneration. A demineralized and particulate autogenous tooth was prepared and human osteoblast-like cells (MG63) and human osteosarcoma cells were inoculated into the culture. The rate of cell adhesion, proliferation and mineralization were examined, and the appearance of cellular attachment was observed. An 8 mm critical size defect was created in the cranium of rabbits. Nine rabbits were divided into three groups including: An experimental group A (3 rabbits), in which a demineralised and particulate autogenous tooth was grafted; an experimental group B (3 rabbits), in which a demineralized, particulate autogenous tooth was grafted in addition to interleukin-6 (20 ng/mL); and a control group. The rabbits were sacrificed at 1, 2, 4 and 6 weeks for histopathological examination with H-E and Masson's Trichrome, and immunohistochemistry with osteocalcin. The cell-based assay showed a higher rate of cell adhesion, mineralization and cellular attachment in the experimental group A compared with the control group. The animal study revealed an increased number of osteoclasts, newly formed and mature bones in the experimental group A compared with the control group. Eventually, a higher number of osteoclasts were observed in the experimental group B. However, the emergence of newly formed and mature bone was lower than in the experimental group A. The current results suggest that treatment with demineralized and particulate autogenous tooth and interleukin-6 is not effective in stimulating bone regeneration during the bone grafting procedure.

Different Bone Graft Materials in Intrabony Defects (치조골내낭에 수종의 골이식재 이식후 혈소판 유래 성장인자의 분포에 관한 면역조직화학적 연구)

  • Um, Heung-Sik;Han, Soo-Boo;Lee, Jae-Il;Kim, Hyun-Jong;Chang, Beom-Sek
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.45-59
    • /
    • 1997
  • Platelet-derived growth factor(PDGF) has been shown to play an important role in periodontal regeneration. The purpose of the present study was to examine the distribution of PDGF in experimentally created periodontal intrabony defects after flap surgery with various bone graft materials. Six healthy mongrel dogs were used in this study. Three-wall bony defects were created in maxillary and mandibular premolars, inflammation induced by wire ligation and injection of impression material into the defects. Eight weeks later, the experimental lesions thus obtained were treated by plain flap surgery(control group), flap surgery plus autogenous bone graft(autogenous bone group), flap surgery plus Biocoral graft(Biocoral group), or flap surgery plus bioglass graft(bioglass group), which were randomly assigned to the defects. After 4, H, and 12 weeks postoperatively, 2 dogs were sacrificed at each time and 1he specimens were taken for histological examinations and immunohistochemical examinations for PDGF. In the control defects the amount of new bone formation was minimal. In the autogenous bone and Biocoral group new bone was deposited around implanted particles and the amount of new bone was increased with time. A large number of bioglass particles exibited a central excabation and bone formation could be observed in the central excabation as well as around the particles. The expression of PDGF was low in the control group. The expression of PDGF in Biocoral group was increased at 1, H week, but decreased at 12 week. The increased PDGF expression in autogenous bone and bioglass group was maintained to the end of the experiment.

  • PDF

Evaluation of augmented alveolar bone and dental implant after autogenous onlay block bone graft (ORIGINAL ARTICLE - 자가 온레이 블럭골 이식 후 증대된 치조골과 임플란트의 평가)

  • Shet, Uttom Kumar;Cho, Min-Sung;Hur, Jung-Woo;Oh, Chul-Jung;Chung, Kwang;Park, Hong-Ju;Kook, Min-Suk;Jung, Seung-Gon;Oh, Hee-Kyun
    • The Journal of the Korean dental association
    • /
    • v.50 no.6
    • /
    • pp.329-338
    • /
    • 2012
  • Introduction: The purpose of this study is to evaluate the clinical results of vertical alveolar ridge augmentation using autogenous block bone graft, especially resorption rate, and outcomes of dental implants placed in the grafted site. Patients and Methods: Medical records and radiographs were reviewed. Twenty-seven patients who have been received the autogenous block bone graft which harvested from chin, ramus, and ilium, and the implant installation on 31 areas(22 maxillas and 9 mandibles) were included. Eight implants were installed simultaneously at the time of bone graft in 4 patients, and 65 implants were installed after 4.9 months(range 2~18 months) of autogenous block bone graft in 23 patients. The resorption amount and rate of augmented bone, and the success and survival rates implants were evaluated. Results: Mean height of the augmented block bone was $5.9{\pm}2.3mm$(range from 2.5 to 13.0 mm). Mean follow-up period after block bone graft was 30.4 months(range from 16 to 55 months). Mean resorption of the augmented block bone was $2.0{\pm}1.5mm$ (range from 0.5 to 7.24 mm). The success and survival rates of the implants were 78.1 % and 98.6%, respectively. Conclusion: This study indicates that the autogenous block bone graft is a useful and stable method for alveolar ridge augmentation for dental implant. And more augmentation is needed to compensate the resorption of the grafted bone.

A STUDY ON THE BONE FORMATION OF GRAFT MATERIAL CONTAINING DEMINERALIZED BONE MATRIX WITH A SIMULTANEOUS INSTALLATION OF IMPLANT (임프란트 식립시 이식된 탈회골기질을 함유한 이식재의 골형성에 대한 연구)

  • Kim, Yeo-Gab;Yoon, Byung-Wook;Ryu, Dong-Mok;Lee, Baek-Soo;Oh, Jung-Hwan;Kwon, Yong-Dae
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.481-491
    • /
    • 2005
  • Purpose: The aim of the present study is to evaluate the effect of autogenous bone and allograft material coverd with a bioresorbable membrane on bone regeneration after a simultaneous installation of implant. Materials and methods: Twelve healthy rabbits, weighing about $3{\sim}4$ kg, were used in this experiment. Following impalnt(with 3.25 mm diameter and 8 mm length) site preparation by surgical protocol of $Oraltronics^{(R)}$, artificial bony defect, 5mm sized in height and depth, was created on femoral condyle using trephine drill(with 5 mm diameter and 5 mm length). Then implant was inserted. In the experimental group A, the bony defect was filled with autogenous particulated bone and coverd with $Lyoplant^{(R)}$ resorbable membrane. In the experimental group B, the bony defect was filled with allograft material(Orthoblast $II^{(R)}$) containing demineralized bone matrix and covered with $Lyoplant^{(R)}$. In the control group, without any graft materials, the bony defect was covered with $Lyoplant^{(R)}$. The experimental group A and B were divided into each 9 cases and control group into 3 cases. The experimental animals were sacrificed at 3, 6 and 8 weeks after surgery and block specimens were obtained. With histologic and histomorphometric analysis, we observed the histologic changes of the cells and bone formation after H-E staining and then, measured BIC and bone density with KAPPA Image $Base^{(R)}$ system. Results: As a result of this experiment, bone formation and active remodeling process were examined in all experimental groups and the control. But, the ability of bone formation of the experimental group A was somewhat better than any other groups. Especially bone to-implant contact fraction ranged from 12.7% to 43.45% in the autogenous bone group and from 9.02% to 29.83% in DBM group, at 3 and 8 weeks. But, bone density ranged from 15.67% to 23.17% in the autogenous bone group and from 25.95% to 46.06% in DBM group at 3 and 6 weeks, respectively. Although the bone density of DBM group was better than that of autogenous bone group at 3 and 6weeks, the latter was better than the former at 8 weeks, 54.3% and 45.1%, respectively. Therefore these results showed that DBM enhanced the density of newly formed bone at least initially.

Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction (즉시 탈회 치아이식재를 사용한 치조골 재건술)

  • Lee, Eun-Young
    • The Journal of the Korean dental association
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

Vertical and Horizontal Ridge Augmentation Using Autogenous Tooth Bone Graft Materials: Case Report (자가치아골이식재를 이용한 치조능 수직 및 수평증대술: 증례보고)

  • Kim, Young-Kyun;Kim, Su-Gwan;Um, In-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.166-170
    • /
    • 2011
  • Horizontal and vertical ridge augmentation was performed using autogenous tooth bone graft block and powder in 44-year old male patient. Excellent bony healing was obtained 2~4 months after ridge augmentation. Implant treatment was performed successfully.

STABILITY OF SIMULTANEOUS IMPLANTATION WITH AUTOGENOUS ILIAC BONE GRAFT IN THE SEVERELY ATROPHIC MAXILLA (심하게 흡수된 상악골에서 자가 장골 이식술과 동시에 시행한 임프란트 치료의 안정성에 대한 연구)

  • Byun, June-Ho;Park, Bong-Wook;Jeong, Hee-Chan;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.570-578
    • /
    • 2006
  • A severely atrophic maxilla may disturb the proper implant placement. The various bone graft techniques are required for simultaneous or delayed implantation in the cases of atrophic alveolar ridges. We present 11 consecutive patients treated with simultaneous implantation using the autogenous inlay and/or onlay bone grafts from iliac crest to the floor of the maxillary sinus and the alveolar crest. In the cases of atrophic maxilla, a total 69 implants were simultaneously placed with autogenous iliac bone graft. 40 fixtures were inserted in the sinus floor simultaneously with subantral block bone graft, the other 29 fixtures were placed in the anterior or premolar areas with block or particulate bone graft. The vertical alveolar bone height was measured with Dental CT at the preoperation and 6 months postoperation. Moreover, the implant stability quotients (ISQ) were measured by $Osstell^{TM}$ during second implant surgery at 6 months later of first implantation. All implants were obtained successful osseointegration with the grafted bone. The mean vertical increases were 3.9mm in the anterior ridges and 12.8mm in the posterior ridges. During the second implant surgery, mean ISQ were 62.95 in the anterior ridge and 61.32 in the posterior ridge. We concluded that the simultaneous implantation with autogenous iliac bone graft were stable and available methods for severely atrophic maxilla.

Clinical application of bone graft materials in dental implant (임상가를 위한 특집 3 - 기능별 뼈이식재의 임프란트 적용방법)

  • Ahn, Kang-Min
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • Dental implant restoration in partial or full edentulous state has become the standard treatment in recent years. Bone graft with guided bone regeneration technique has been regarded as one of the most reliable methods to restore the bone defect area due to periodontal disease or dental trauma. Bone graft materials and membrane are the essential component of guided bone regeneration; however, a variety of bone graft materials confuse us in implant dentistry. Autogenous bone is the recognized standards in implant dentistry owing to its osteogenesis potential. Despite of its disadvantages, grafting autogenous bone is the most reliable methods. Even though the development of new bone grafts materials, autogenous bone is useful in exposed implant thread and total lack of buccal or lingual bone. Allogenic, xenogenic and synthetic bone have the osteoconductive and osteoinductive potential. These materials could be used successfully in self-contained cavity such as sinus cavity and three-wall defects. In this article, application of bone graft material is suggested according to the function of bone graft materials.

Assessment of the autogenous bone graft for sinus elevation

  • Peng, Wang;Kim, Il-Kyu;Cho, Hyun-Young;Pae, Sang-Pill;Jung, Bum-Sang;Cho, Hyun-Woo;Seo, Ji-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.6
    • /
    • pp.274-282
    • /
    • 2013
  • Objectives: The posterior maxillary region often provides a limited bone volume for dental implants. Maxillary sinus elevation via inserting a bone graft through a window opened in the lateral sinus wall has become the most common surgical procedure for increasing the alveolar bone height in place of dental implants in the posterior maxillary region. The purpose of this article is to assess the change of bone volume and the clinical effects of dental implant placement in sites with maxillary sinus floor elevation and autogenous bone graft through the lateral window approach. Materials and Methods: In this article, the analysis data were collected from 64 dental implants that were placed in 24 patients with 29 lacks of the bone volume posterior maxillary region from June 2004 to April 2011, at the Department of Oral and Maxillofacial Surgery, Inha University Hospital. Panoramic views were taken before the surgery, after the surgery, 6 months after the surgery, and at the time of the final follow-up. The influence of the factors on the grafted bone material resorption rate was evaluated according to the patient characteristics (age and gender), graft material, implant installation stage, implant size, implant placement region, local infection, surgical complication, and residual alveolar bone height. Results: The bone graft resorption rate of male patients at the final follow-up was significantly higher than the rate of female patients. The single autogenous bone-grafted site was significantly more resorbed than the autogenous bone combined with the Bio-Oss grafted site. The implant installation stage and residual alveolar height showed a significant correlation with the resorption rate of maxillary sinus bone graft material. The success rate and survival rate of the implant were 92.2% and 100%, respectively. Conclusion: Maxillary sinus elevation procedure with autogenous bone graft or autogenous bone in combination with Bio-Oss is a predictable treatment method for implant rehabilitation.