• 제목/요약/키워드: Autofrettage

검색결과 41건 처리시간 0.019초

자긴가공된 이중후육실린더의 피로수명에 관한 연구 (A Study on the Fatigue Life of Autofrettaged Compound Cylinder)

  • 이은엽;이영신;양추명;김재훈;차기업;홍석균
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.296-309
    • /
    • 2009
  • Thick-walled cylinder with high pressure have had wide application in the armament industry. In the thick-walled cylinder, fatigue crack is generated at inner radius and developed toward the outer radius. To prevent generation of fatigue crack, the autofrettage process had been used. The compressive residual stress induced by the autofrettage process extends loading pressure and fatigue life of the thick-walled cylinder. In this study, the residual stress of single and compound cylinder by the autofrettage process was evaluated. The analytical compressive residual stress of single cylinder was good agreement with experimental result at inner radius. The analysis on the residual stress of compound cylinder was conducted. The compressive residual stress at inner radius was increased with the overstrain level. And fatigue life of the compound cylinder with initial crack was evaluated. The considered initial crack shape was straight and semi-elliptical. The fatigue life was extended with the overstrain level. The fatigue life of the compound cylinder with semi-elliptical crack was longer than straight crack. The suitable way to extend fatigue life of the compound cylinder was proposed.

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

자긴가공된 두꺼운 실린더의 피로균열 전파수명평가 (Fatigue crack propagation life evaluation of an autofrettaged thick-walled cylinder)

  • 이송인;김진용;정세희;고승기
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.321-329
    • /
    • 1998
  • To ensure the structural integrity of the autofrettaged thick-walled cylinder subjected to cyclic internal pressure loading, the fatigue crack propagation life of the cylinder was evaluated. Stress intensity factors of the external cracked cylinder due to internal pressure and autofrettage loadings were calculated using the finite element method. The fatigue crack propagation lives of the cylinder based on the fracture mechanics concepts were predicted and compared to the experimental fatigue lives evaluated from the C-shaped simulation specimens. There were good correlations between the predicted and experimental fatigue lives within a factor of 3 for the single and double grooved C-shaped simulation specimens. Predicted fatigue crack propagation lives of the double grooved cylinders were about 1.5-5 times longer than those of the single grooved cylinders depending on the levels of autofrettage.

Type 3 복합재 압력용기의 반복수명 예측 방법에 대한 연구 (Cycling life prediction method of the filament-wound composite cylinders with metal liner)

  • Park, Ji-Sang;Chung, Sang-Su;Chung, Jae-Han
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.45-48
    • /
    • 2005
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on liner to improve cycling life can be applied. In this study, finite element analysis technique is presented, which can predict accurately the compressive residual stress on liner induced by autofrettage and stress behavior after. Material and geometry non-linearity is considered in finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

  • PDF

자동차용 압축천연가스 저장용기의 피로수명향상을 위한 자긴처리 효과 분석 (Analysis of an Autofrettage Effect to Improve Fatigue Life of the Automotive CNG Storage Vessel)

  • 김호윤;황범철;배원병;한승무;김철
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.292-301
    • /
    • 2008
  • Type 2 compressed natural gas(CNG) storage vessels for automobiles are becoming widely used. They are not only supplied to automakers in Korea, such as Hyundai Motors, but increasingly, they are being exported overseas. Autofrettage is a process that produces beneficial residual stresses in a vessel by subjecting it to excessive internal pressure. This strengthens the vessel and improves its fatigue resistance. This paper presents research investigating the autoftettage process and residual stresses it produces in type 2 CNG storage vessels. A finite element analysis technique and a closed form equation are used. Then, fatigue resistance is analyzed through a fatigue evaluation performed according to ASME section VIII.

자긴가공된 SCM440 고강도강의 잔류응력평가에 관한 연구 (A Study on the Residual Stress Evaluation of Autofrettaged SCM440 High Strength Steel)

  • 김재훈;심우성;윤용근;이영신;차기업;홍석균
    • 한국추진공학회지
    • /
    • 제14권4호
    • /
    • pp.39-45
    • /
    • 2010
  • 자주포 또는 원자로와 같은 두꺼운 실린더는 압력용기 내부에 유익한 잔류 압축응력을 유도하여 작용압력과 피로수명을 증가시키도록 자긴 가공되고 있다. 자긴가공도가 증가하면 구멍에서 압축잔류응력의 크기도 증가한다. 본연구의 목적은 ASME 코드에 의해 적용된 Kendall 모델을 이용하여 고강도 SCM440 강의 정확한 잔류응력을 예측하는 것이다. SCM440 후육실린더의 내부에 유압이 적용되고 30% 변형률까지 자긴 가공하였다. 자긴가공된 시편은 전해연마하고 X-ray 회절법을 이용하여 정확한 잔류응력을 산출하도록 하였다. 그리고 주사전자현미경을 이용하여 자긴가공에 의해 소성변형된 표면층을 분석하였다. 측정한 잔류응력과 계산된 결과를 비교하여 약간의 차이는 있으나 비교적 서로 잘 일치하고 있다.

자긴가공된 후육실린더의 잔류응력 해석에 관한 연구 (A Study on Residual Stress Analysis of Autofrettaged Thick-walled Cylinders)

  • 김재훈;심우성;이영신;차기업;홍석균
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.110-116
    • /
    • 2009
  • Thick-walled cylinders, such as a cannon or nuclear reactor, are autofrettaged to induce advantageous residual stresses into pressure vessels and to increase operating pressure and the fatigue lifetimes. As the autofrettage level increases, the magnitude of compressive residual stress at the bore also increases. However, the Bauschinger effect reduces the compressive residual stresses as a result of prior tensile plastic strain, and decreases the beneficial autofrettage effect. The purpose of the present paper is to predict the accurate residual stress of SNCM8 high strength steel using the Kendall model which was adopted by ASME Code. The uniaxial Bauschinger effect test was performed to decide BEF, then this constant was used in calculation. There were some differences between theoretical solution and modified solution.

이음매 없는 일체형 라이너를 갖는 복합재 압력용기의 피로수명 향상에 대한 연구 (A Study on Improving Fatigue Life for Composite Cylinder with Seamless Integrated Liner)

  • 김효준
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.46-51
    • /
    • 2013
  • 복합재 압력용기는 높은 비강성과 비강도 그리고 내피로성으로 수소연료전지자동차와 천연가스자동차에 사용된다. 이음매가 없는 일체형 라이너를 갖는 복합재 압력용기는 고강도 탄소섬유와 에폭시 레진으로 라이너 전체를 감싼다. 본 연구에서는 구조적으로 취약한 너클 부위와 압축잔류응력을 고려하여 필라멘트 와인딩 패턴과 자긴압력 설계 기법을 제시하였다. 복합재 압력용기 시제품에 대한 압력반복시험을 통해 제안된 방법을 검증한다.

잔류응력이 내재하는 원통형 부품의 내면 가공에 따른 치수 변화와 잔류 응력의 재분포 (DIMENSIONAL CHANGES AND REDISTRIBUTION OF RESID¬UAL STRESSES DUE TO INNER LAYER REMOVAL OF RESID¬UALLY STRESSED CYLINDRICAL COMPONENTS)

  • S.H.Shin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.522-526
    • /
    • 1997
  • 잔류 응력이 존재하는 부품의 가공 시에는 잔류 응력 상태가 새로운 평형 상태를 이루기 위해 재 분포되며 이는 가공 자체에 따른 변형 이와의 부가적 변형을 초래한다. 고도의 정밀도를 요하는 가공에는 이러한 잔류 응력에 의한 부가적 변형을 고려하여야 하며, 가공 후의 잔류 응력의 재 분포 상태는 가공 후 부품의 물질적 성능을 결정하는데 중요한 요소이므로 이를 예측할 수 있어야 한다. 본 연구에서는 잔류 응력에 의한 부가적 치수 변화를 고려한 가공 후의 부품의 내경 및 두께와 잔류 응력의 재 분포를 예측할 수 있는 이론적 수식을 제시하고 유한요소법에 의한 시뮬레이션의 결과와 비교하였다. 초기 잔류 응력의 분포는 autofrettage process에 의해 유도되었다.

  • PDF

The Overstrain of Thick-Walled Cylinders Considering the Bauschinger Effect Facto. (BEF)

  • Ghorbanpour, A.;Loghman, A.;Khademizadeh, H.;Moradi, M.
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.477-483
    • /
    • 2003
  • An independent kinematic hardening material model in which the reverse yielding point is defined by the Bauschinger effect factor (BEF) , has been defined for stainless steel SUS 304. The material model and the BEF are obtained experimentally and represented mathematically as continuous functions of effective plastic strain. The material model has been incorporated in a non-linear stress analysis for the prediction of reverse yielding in thick-walled cylinders during the autofrettage process of these vessels. Residual stress distributions of the independent kinematic hardening material model at the onset of reverse yielding are compared with residual stresses of an isotropic hardening model showing the significant effect of the BEF on reverse yielding predictions. Critical pressures of direct and reverse yielding are obtained for the most commonly used cylinders and a range of permissible internal pressures for an efficient autofrettaged process is recommended.