• Title/Summary/Keyword: Auto-modeling process

Search Result 92, Processing Time 0.022 seconds

A Study on the Modeling and Diagnostics in Drilling Operation (드릴링 작업의 모델링과 진단법에 관한 연구)

  • Yoon, M.C.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1998
  • The identification of drilling joint dynamics which consists of drilling and structural dynamics and the on-line time series detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics but also for the analytic realization of diagnostic and control systems in drilling. Therefore, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the drilling operation and detect the abnormal geometric behaviors in precision roundshape machining such as turning, drilling and boring in precision diemaking. For this purpose, simulation and experimental work were performed to show the malfunctional behaviors for drilling operation. For this purpose, a new two recursive approach (Recursive Extended Instrument Variable Method : REIVM, Recursive Least Square Method : RLSM) may be adopted for the on-line system identification and monitoring of a malfunction behavior of drilling process, such as chipping, wear, chatter and hole lobe waviness.

  • PDF

SOx Process Simulation, Monitoring, and Pattern Classification in a Power Plant (발전소에서의 SOx 공정 모사, 모니터링 및 패턴 분류)

  • 최상욱;유창규;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.827-832
    • /
    • 2002
  • We propose a prediction method of the pollutant and a synchronous classification of the current state of SOx emission in the power plant. We use the auto-regressive with exogeneous (ARX) model as a predictor of SOx emission and use a radial basis function network (RBFN) as a pattem classifier. The ARX modeling scheme is implemented using recursive least squares (RLS) method to update the model parameters adaptively. The capability of SOx emission monitoring is utilized with the application of the RBFN classifier. Experimental results show that the ARX model can predict the SOx emission concentration well and ARX modeling parameters can be a good feature for the state monitoring. in addition, its validity has been verified through the power spectrum analysis. Consequently, the RBFN classifier in combination with ARX model is shown to be quite adequate for monitoring the state of SOx emission.

Performance Improvement of Topic Modeling using BART based Document Summarization (BART 기반 문서 요약을 통한 토픽 모델링 성능 향상)

  • Eun Su Kim;Hyun Yoo;Kyungyong Chung
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • The environment of academic research is continuously changing due to the increase of information, which raises the need for an effective way to analyze and organize large amounts of documents. In this paper, we propose Performance Improvement of Topic Modeling using BART(Bidirectional and Auto-Regressive Transformers) based Document Summarization. The proposed method uses BART-based document summary model to extract the core content and improve topic modeling performance using LDA(Latent Dirichlet Allocation) algorithm. We suggest an approach to improve the performance and efficiency of LDA topic modeling through document summarization and validate it through experiments. The experimental results show that the BART-based model for summarizing article data captures the important information of the original articles with F1-Scores of 0.5819, 0.4384, and 0.5038 in Rouge-1, Rouge-2, and Rouge-L performance evaluations, respectively. In addition, topic modeling using summarized documents performs about 8.08% better than topic modeling using full text in the performance comparison using the Perplexity metric. This contributes to the reduction of data throughput and improvement of efficiency in the topic modeling process.

An Expert System for the Process Planning of the Elliptical Deep Drawing Transfer Die (타원형 디프 드로잉 트랜스퍼 금형의 공정설계 전문가 시스템(I))

  • 박동환;박상봉;강성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.255-262
    • /
    • 2000
  • A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs an expert system of process planning for non-axisymmetric motor frame products with elliptical shape. The system developed consists of four modules. The first one is recognition of shape module to recognize the products. The second one is a 3-D modeling module to calculate surface area for non-axisymmetric products. The third one is a blank design module that creates an oval-shaped blank with the identical surface area. The forth one is a process planning module based on production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. The constructed system using AutoLISP language under the AutoCAD environment is baled on the knowledge base system which is involved a lot of expert's technology. Results of this system will be provide effective aids to the designer and engineer in this field.

  • PDF

Development of GSCAD Template Rule for Hull Plate Forming (GSCAD를 이용한 Template 기능 개발 및 적용)

  • Yoon, Jong-Sung;Park, Ji-Hyun;Myoung, Hee-Keon;SaKong, Gae-Wan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.32-35
    • /
    • 2011
  • Template has been widely used for hull forming process in most of shipyards. It is used to estimate the curvature of deformed shape in comparison with design shape. SHI (Samsung Heavy Industry) had used AutoKon system for ship manufacturing design in the past. The AutoKon used the global coordinate system of ship (frame, water line and so on) to create template data. It brought the mismatched angles between templates and a curved shell plate. The mismatched angle is measured by forming worker to place template on shell forming stage. However, the mismatched angle is difficult to place template with exactly required angle because the shell plates have various curvature and size. It causes incorrect shape of formed shell plates. The attached angle of template should be 90 degree to place template easily on forming shell plates. Currently, SHI has been applied GSCAD for ship manufacturing design process which is 3D solid modeling system. The GSCAD is the rule-based system which can automate 3D modeling and control the manufacturing data by rule. The rule can easily provide methods to create and automate template object with regular attached angle in comparison with AutoKon system. Therefore, SHI developed new template rule which it can automatically create template object with regular attached angle in GSCAD.

  • PDF

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Parametric Design and Wind Load Application for Retractable Large Spatial Structures (개폐식 대공간 구조물의 파라메트릭 설계와 풍하중 적용)

  • Kim, Si-Uk;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.341-348
    • /
    • 2019
  • The purpose of this study is to model and analyze retractable large spatial structures by applying parametric modeling techniques. The modeling of wind loads in the analysis of typical structures including curved surfaces can be error-prone, and the processing time increases dramatically when there are many types of variables. However, the method based on StrAuto that was developed in previous research, facilitates the efficacious assignment of wind loads to structures and the rapid arrival of conclusions. As a result, it is possible to compare alternatives with various loads, including wind loads, to determine an optimal alternative much faster than the existing process. Further, it is almost impossible to directly input the wind load by calculating the area of an irregularly curved surface. However, the proposed method automatically assigns the wind load, which allows for automatic optimization in a structural analysis system. The approach was applied and optimized using several models, and the results are presented.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

A study on Design & Implementation of Supply Chain Management adopting Object-Oriented design methodology for auto-part manufacture company (객체지향 UML을 활용한 자동차부품제조업체의 공급사슬관리망 설계.구현 연구)

  • Na, Sang-Gyun;Lee, Jun-Su;You, Tai-Woo;Jeong, Byung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.73-84
    • /
    • 2007
  • This paper was concerned about design and implementation of supply chain management for auto-part company by adopting a UML(Unified Modeling Language). The part of SCM and e-business have interested by larger company, researcher and academic professor. There has been known about a little implementing SCM and it's initiatives for SME(small-medium sized enterprise). We, in this paper, dealt with design and implementing the SCM on supply chain auto part SMEs. The UML is a standard language for specifying, visualizing, constructing, and documenting the artifacts of software systems. It simplifies the complex process of software design, making a blueprint for the SCM implementation. In this paper, we also adopt some methods for the systematic system analysis, design, and implementation by applying UML to a SCM system.

Application of Computer Aided Blank Design System for Motor Frame Die, Automobile (자동차 모터 프레임 금형에서 블랭크 설계 자동화 시스템의 적용)

  • 박동환;박상봉;강성수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.753-756
    • /
    • 2000
  • The accumulated know-how and trial-and-error procedures are known as the best ways to determine blank shape and dimensions. One of the most important steps to determine the blank shape and dimensions in deep drawing process is to calculate the surface area of the product. In general, the surface area of products is calculated by mathematical or 3-D modeling methods. A blank design system is constructed for elliptical deep drawing products to recognize the geometry of the product in the long side and short side by drafting in another two layers on AutoCAD software. This system consists of input geometry recognition module, 3-D modeling module and blank design module, respectively. Blank dimension of three types is determined by the same area, which was acquired in 3-D modeling module. The suitability of this system is verified by applying to a real deep drawing product.

  • PDF