• Title/Summary/Keyword: Auto-encode

Search Result 3, Processing Time 0.018 seconds

FUNDAMENTAL PERFORMANCE OF IMAGE CODING SCHEMES BASED ON MULTIPULSE MODEL

  • Kashiwagi, Takashi;Kobayashi, Daisuke;Koda, Hiromu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.825-829
    • /
    • 2009
  • In this paper, we examine the fundamental performance of image coding schemes based on multipulse model. First, we introduce several kinds of pulse search methods (i.e., correlation method, pulse overlap search method and pulse amplitude optimization method) for the model. These pulse search methods are derived from auto-correlation function of impulse responses and cross-correlation function between host signals and impulse responses. Next, we explain the basic procedure of multipulse image coding scheme, which uses the above pulse search methods in order to encode the high frequency component of an original image. Finally, by means of computer simulation for some test images, we examine the PSNR(Peak Signal-to-Noise Ratio) and computational complexity of these methods.

  • PDF

Transcriptional Activator Elements for Curtovirus C1 Expression Reside in the 3' Coding Region of ORF C1

  • Hur, Jingyung;Buckley, Kenneth J.;Lee, Sukchan;Davis, Keith R.
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.80-87
    • /
    • 2007
  • Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV), members of curtoviruses, encode seven open reading frames (ORFs) within a ~3 kb genome. One of these viral ORFs, C1, is known to play an important role in the early stage of viral infection in plants during initiation of viral DNA replication. We used promoter:: reporter (${\beta}$-glucuronidase) gene fusions in transgenic Arabidopsis to identify the putative promoter region of BCTV ORF C1. Unlike other geminiviruses, the intergenic region of BCTV was not sufficient to promote C1 expression in transgenic plants. When sequences extending into the coding region of C1 were tested, strong expression of the reporter protein was observed in vascular tissues of transgenic plants. This expression was not dependent on the presence of the intergenic regions or proximal 5' portions of the C1 coding region. Transgenic plants expressing a reporter gene under control of the putative complete C1 promoter were inoculated with virus to determine if any viral transcript affected C1 expression. Virus inoculated plants did not show any altered pattern or change in of reporter gene expression level. These results suggest that (1) important transcriptional activator elements for C1 expression reside in the 3' portion of C1 coding area itself, (2) C1 protein does not auto-regulate its own expression and (3) C1 expression of two curtoviruses is controlled differently compared to other geminiviruses.

Anomaly Detection in Livestock Environmental Time Series Data Using LSTM Autoencoders: A Comparison of Performance Based on Threshold Settings (LSTM 오토인코더를 활용한 축산 환경 시계열 데이터의 이상치 탐지: 경계값 설정에 따른 성능 비교)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.48-56
    • /
    • 2024
  • In the livestock industry, detecting environmental outliers and predicting data are crucial tasks. Outliers in livestock environment data, typically gathered through time-series methods, can signal rapid changes in the environment and potential unexpected epidemics. Prompt detection and response to these outliers are essential to minimize stress in livestock and reduce economic losses for farmers by early detection of epidemic conditions. This study employs two methods to experiment and compare performances in setting thresholds that define outliers in livestock environment data outlier detection. The first method is an outlier detection using Mean Squared Error (MSE), and the second is an outlier detection using a Dynamic Threshold, which analyzes variability against the average value of previous data to identify outliers. The MSE-based method demonstrated a 94.98% accuracy rate, while the Dynamic Threshold method, which uses standard deviation, showed superior performance with 99.66% accuracy.