• 제목/요약/키워드: Auto-Classification

검색결과 167건 처리시간 0.026초

Characteristics of Pig Carcass and Primal Cuts Measured by the Autofom III Depend on Seasonal Classification

  • Choi, Jungseok;Kwon, Kimun;Lee, Youngkyu;Ko, Eunyoung;Kim, Yongsun;Choi, Yangil
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.332-344
    • /
    • 2019
  • The objective of this study was to investigate slaughtering performance, carcass grade, and quantitative traits of cuts according to seasonal influence by each month in pigs slaughtered in livestock processing complex (LPC) slaughterhouse in Korea, 2017. A total of 267,990 LYD ($Landrace{\times}Yorkshire{\times}Duroc$) pig data were used in this study. Results of slaughter heads, sex distribution, carcass weight, backfat thickness, grading class, total weight, and fat and lean meat percentages of each cut predicted by AutoFom III were obtained each month. The number of slaughtered pigs was the highest in early and late fall but the lowest in midsummer. Only in midsummer that the number of females was higher than that of castrates. During 2017, carcass weight was the lowest in late summer. Backfat thickness was in the range of 21-22 mm. In mid and late spring, pigs showed high 1+ grade ratio (37.05% and 36.15%, respectively). For traits of 11 cuts predicted by AutoFom III, porkbelly showed lower total weight, lean weight, and fat weight in midsummer to early fall but higher lean meat percentage compared to other seasons. Weights of deboned neck, loin, and lean meat were the highest in midfall compared to other seasons (p<0.05). In conclusion, characteristics of slaughtering, grading, and economic traits of pigs seemed to be highly seasonal. They were influenced by seasons. Results of this study could be used as basic data to develop seasonal specified management ways to improve pork production.

한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델 (A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry)

  • 임수빈;문지훈;노승민
    • Journal of Platform Technology
    • /
    • 제11권3호
    • /
    • pp.45-55
    • /
    • 2023
  • 본 논문은 한국 영화 산업의 의사 결정자들이 온라인상에서의 영화의 흥행을 극대화할 수 있도록 지원하는 데 도움을 주고자 역대 박스오피스 영화를 수집하여 영화를 유형별로 군집화하고, 유형별 온라인 박스오피스를 예측하는 모델을 제시한다. 이를 위해 먼저 다양한 특성을 고려하여 영화의 흥행 요인을 식별하고, 계산 효율성을 고려하여 특성 차원을 줄인다. 다음으로 영화의 유형을 체계적으로 분류하고, 유형별 온라인 박스오피스를 예측하며 흥행에 이바지한 요소를 분석한다. 이때, AutoML (Automated Machine Learning) 기법을 활용함으로써 다양한 기계학습 알고리즘을 자동으로 구성하고, 문제에 최적화된 알고리즘을 선택함으로써 여러 알고리즘을 쉽게 시도 및 선택한다. 이를 통해 정보화된 판단을 내릴 수 있는 기반을 제공하고, 영화 산업의 더 나은 성과를 도모하는 데 이바지할 것으로 기대할 수 있다.

  • PDF

Google Earth Engine 기반의 한반도 토양수분 모니터링 자동화 기법 연구 (A study on automated soil moisture monitoring methods for the Korean peninsula based on Google Earth Engine)

  • 장원진;정지훈;이용관;김진욱;김성준
    • 한국수자원학회논문집
    • /
    • 제57권9호
    • /
    • pp.615-626
    • /
    • 2024
  • 본 연구에서는 우리나라 전역에 대해 정확하고 시간 및 비용 효율적으로 토양수분 모니터링을 수행하기 위해 클라우드 컴퓨팅 플랫폼 Google Earth Engine (GEE)와 자동화기계학습(Automated Machine Learning, AutoML)을 결합한 토양수분 산정모형을 개발하였다. Terra MODIS (Moderate Resolution Imaging Spectroradiometer), 전구 강수 관측 위성 GPM (Global Precipitation Measurement)을 기반으로 다양한 공간정보를 활용해 최적의 입력 자료 조합을 테스트하였다. 그 결과, GPM 기반의 무강우누적일수 및 5일 평균강수량, NDVI (Normalized Difference Vegetation Index)와 밤 및 낮시간에 촬영된 LST (Land Surface Temperature)의 합계, 토양특성(사토 및 점토 함량, 용적밀도), 지형자료(고도 및 경사도), 계절 구분이 변수중요도(Feature importance)가 높은 것으로 나타났다. 상기 자료의 조합을 AutoML 통해 목적함수 (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE)를 설정 후 기계학습 기법별 비교평가를 수행한 결과, Tree 계열의 모형이 높은 성능을 보였으며, 그 중, Random Forest의 성능이 가장 우수하였다(R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).

색인어 연관성을 이용한 의료정보문서 분류에 관한 연구 (A Study on Classification of Medical Information Documents using Word Correlation)

  • 임형근;장덕성
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.469-476
    • /
    • 2001
  • 현대사회에서 웹을 통한 정보 제공 서비스가 늘어나면서 병원에서도 홈페이지와 E-mail을 통하여 많은 질문과 상담이 진행되고 있다. 그러나, 이것은 관리자에 대한 업무부담과 답변에 대한 응답시간 지연의 문제가 있다. 본 논문에서는 이런 질의문서에 대한 자동응답시스템의 기초연구로 문서 분류 방법을 연구하였다. 실험방법으로 1200개의 환자질의문서를 대상으로 66%는 학습문서로, 34%는 테스트문서로 활용하여 이것을 NBC(Naive Bayes Classifier), 공통색인어, 연관계수를 이용한 문선분류에 사용하였다. 문서 분류 결과, 기본적인 NBC방법 보다는 본 논문에서 제안한 두 방법이 각각 3%, 5% 정도 더 높게 나타났다. 이러한 색인어의 빈도보다, 색인어와 카테고리간의 연관성이 문서 분류에 더 효과적이라는 것을 의미한다.

  • PDF

Implementation of Git's Commit Message Complex Classification Model for Software Maintenance

  • Choi, Ji-Hoon;Kim, Joon-Yong;Park, Seong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.131-138
    • /
    • 2022
  • Git의 커밋 메시지는 프로젝트 생명주기와 밀접한 연관성을 지니고 있으며, 이러한 특성에 의해 프로젝트 운영 활동의 위험요소와 프로젝트 현황 등을 파악하여 비용 절감과 작업효율 개선 등에 큰 기여를 할 수 있다. 이와 관련한 분야 중 커밋 메시지를 소프트웨어 유지관리의 유형으로 분류하는 많은 연구가 있으며 연구 중 최대 정확도는 87%다. 본 논문에서는 커밋 분류 모델을 이용한 솔루션 등의 활용을 목적으로 진행 하였고 기존에 발표된 모델들보다 정확도를 높여 모델의 신뢰성을 높이기 위해 여러 모델을 조합한 복합 분류 모델을 설계하고 구현하였다. 본문은 자동화 레이블링 및 소스 변경 내용을 추출하여 데이터셋을 구성하고 디스틸 버트(DistilBERT) 모델을 이용하여 학습시켰다. 검증결과 기존 연구에서 보고된 최대 87%보다 8%가 향상된 95%의 F1 점수 값을 얻어 신뢰성을 확보하였다. 본 연구 결과를 이용하면 모델의 신뢰성을 높이고 이를 이용해 소프트웨어 및 프로젝트관리 등의 솔루션에 적용이 가능할 것으로 기대된다.

초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류 (Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal)

  • 임내묵;신동환;김덕영;김성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF

유비쿼터스 컴퓨팅환경에서의 Multimodal Sensor 기반의 Health care를 위한 사용자 행동 자동인식 시스템 - Multi-Sensor를 이용한 ADL(activities of daily living) 지수 자동 측정 시스템 (Design and Implementation of a User Activity Auto-recognition System based on Multimodal Sensor in Ubiquitous Computing Environment)

  • 변성호;정유석;김태수;김현우;이승환;조위덕
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.21-26
    • /
    • 2009
  • 유비쿼터스 컴퓨팅 환경의 급속한 발전은 Multi-Sensor를 이용하여 자동으로 사용자의 행동인식을 가능한 환경을 만들어주었다. 따라서 이 논문에서는 사용자가 일상생활을 하는데 있어서 기본적으로 필요한 행동인 ADL(activities of daily living)의 수행능력을 분석하고 진단할 수 있는 Multi-Sensor기반의 ADL 자동 진단 시스템을 구축하였다. 두 개의 가속도 센서를 허벅지와 손목에 부착하여 사용자의 행동 정보를 수집하고 이를 Decision-Tree를 통하여 분석하여 사용자의 행동 정보를 수집하였다. 또한 Zigbee 센서를 이용하여 개별 물체의 Object ID를 이용하여 사용자의 위치정보와 주변의 물체의 정보를 수집하여 사용자의 상태 정보를 수집하였다. 이렇게 수집된 행동 정보와 상태 정보들을 통하여 일상생활에 필요한 약 20여 가지의 행동을 인식하였고 평균적으로 96%이상의 정확도를 나타내었으며 이를 통하여 ADL 지수를 자동으로 측정하였다.

  • PDF

웨이블렛 변환과 신경망을 이용한 음향방출신호의 자동분류에 관한연구 (A Study on Auto-Classification of Acoustic Emission Signals Using Wavelet Transform and Neural Network)

  • 박재준;김면수;오승헌;강태림;김성홍;백관현;오일덕;송영철;권동진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1880-1884
    • /
    • 2000
  • The discrete wavelet transform is utilized as preprocessing of Neural Network(NN) to identify aging state of internal partial discharge in transformer. The discrete traveler transform is used to produce wavelet coefficients which are used for Classification. The statistical parameters (maximum of wavelet coefficients, average value, dispersion, skewness, kurtosis) using the wavelet coefficients are input into an back-propagation neural network. The neurons whose weights have obtained through Result of Cross-Validation. The Neural Network learning stops either when the error rate achieves an appropriate minimum or when the learning time overcomes a constant value. The networks, after training, can decide if the test signal is Early Aging State or Last Aging State or normal state.

  • PDF

과학기술 전문용어의 다국어 의미망 생성과 분석 (Building and Analysis of Semantic Network on S&T Multilingual Terminology)

  • 정도헌;최희윤
    • 정보관리연구
    • /
    • 제37권4호
    • /
    • pp.25-47
    • /
    • 2006
  • 다국어로 구축된 학술정보 시스템의 통합검색 환경을 구현하기 위해서는 다국어 전문용어에 대한 해석을 제공하고 전문용어의 분야별 분류정보를 제공할 수 있는 시스템이 필요하다. 본 연구는 이러한 다국어 환경의 통합 정보검색 시스템을 운용할 수 있도록 기반시스템을 구축하는 것을 목적으로 한다. 다국어 의미망으로 상호 연결된 과학기술 전문용어 체계를 구축하는 방법과 다단계 연결노드에 대한 최단거리 탐색 기법을 소개하였다. 또한, 생성된 용어군집 결과를 해석하기 위한 기초분석을 수행하여 향후 심도있는 분석연구를 수행하기 위한 기반을 마련하고자 하였다.

Cluster-based Deep One-Class Classification Model for Anomaly Detection

  • Younghwan Kim;Huy Kang Kim
    • Journal of Internet Technology
    • /
    • 제22권4호
    • /
    • pp.903-911
    • /
    • 2021
  • As cyber-attacks on Cyber-Physical System (CPS) become more diverse and sophisticated, it is important to quickly detect malicious behaviors occurring in CPS. Since CPS can collect sensor data in near real time throughout the process, there have been many attempts to detect anomaly behavior through normal behavior learning from the perspective of data-driven security. However, since the CPS datasets are big data and most of the data are normal data, it has always been a great challenge to analyze the data and implement the anomaly detection model. In this paper, we propose and evaluate the Clustered Deep One-Class Classification (CD-OCC) model that combines the clustering algorithm and deep learning (DL) model using only a normal dataset for anomaly detection. We use auto-encoder to reduce the dimensions of the dataset and the K-means clustering algorithm to classify the normal data into the optimal cluster size. The DL model trains to predict clusters of normal data, and we can obtain logit values as outputs. The derived logit values are datasets that can better represent normal data in terms of knowledge distillation and are used as inputs to the OCC model. As a result of the experiment, the F1 score of the proposed model shows 0.93 and 0.83 in the SWaT and HAI dataset, respectively, and shows a significant performance improvement over other recent detectors such as Com-AE and SVM-RBF.