The objective of this study was to investigate slaughtering performance, carcass grade, and quantitative traits of cuts according to seasonal influence by each month in pigs slaughtered in livestock processing complex (LPC) slaughterhouse in Korea, 2017. A total of 267,990 LYD ($Landrace{\times}Yorkshire{\times}Duroc$) pig data were used in this study. Results of slaughter heads, sex distribution, carcass weight, backfat thickness, grading class, total weight, and fat and lean meat percentages of each cut predicted by AutoFom III were obtained each month. The number of slaughtered pigs was the highest in early and late fall but the lowest in midsummer. Only in midsummer that the number of females was higher than that of castrates. During 2017, carcass weight was the lowest in late summer. Backfat thickness was in the range of 21-22 mm. In mid and late spring, pigs showed high 1+ grade ratio (37.05% and 36.15%, respectively). For traits of 11 cuts predicted by AutoFom III, porkbelly showed lower total weight, lean weight, and fat weight in midsummer to early fall but higher lean meat percentage compared to other seasons. Weights of deboned neck, loin, and lean meat were the highest in midfall compared to other seasons (p<0.05). In conclusion, characteristics of slaughtering, grading, and economic traits of pigs seemed to be highly seasonal. They were influenced by seasons. Results of this study could be used as basic data to develop seasonal specified management ways to improve pork production.
본 논문은 한국 영화 산업의 의사 결정자들이 온라인상에서의 영화의 흥행을 극대화할 수 있도록 지원하는 데 도움을 주고자 역대 박스오피스 영화를 수집하여 영화를 유형별로 군집화하고, 유형별 온라인 박스오피스를 예측하는 모델을 제시한다. 이를 위해 먼저 다양한 특성을 고려하여 영화의 흥행 요인을 식별하고, 계산 효율성을 고려하여 특성 차원을 줄인다. 다음으로 영화의 유형을 체계적으로 분류하고, 유형별 온라인 박스오피스를 예측하며 흥행에 이바지한 요소를 분석한다. 이때, AutoML (Automated Machine Learning) 기법을 활용함으로써 다양한 기계학습 알고리즘을 자동으로 구성하고, 문제에 최적화된 알고리즘을 선택함으로써 여러 알고리즘을 쉽게 시도 및 선택한다. 이를 통해 정보화된 판단을 내릴 수 있는 기반을 제공하고, 영화 산업의 더 나은 성과를 도모하는 데 이바지할 것으로 기대할 수 있다.
본 연구에서는 우리나라 전역에 대해 정확하고 시간 및 비용 효율적으로 토양수분 모니터링을 수행하기 위해 클라우드 컴퓨팅 플랫폼 Google Earth Engine (GEE)와 자동화기계학습(Automated Machine Learning, AutoML)을 결합한 토양수분 산정모형을 개발하였다. Terra MODIS (Moderate Resolution Imaging Spectroradiometer), 전구 강수 관측 위성 GPM (Global Precipitation Measurement)을 기반으로 다양한 공간정보를 활용해 최적의 입력 자료 조합을 테스트하였다. 그 결과, GPM 기반의 무강우누적일수 및 5일 평균강수량, NDVI (Normalized Difference Vegetation Index)와 밤 및 낮시간에 촬영된 LST (Land Surface Temperature)의 합계, 토양특성(사토 및 점토 함량, 용적밀도), 지형자료(고도 및 경사도), 계절 구분이 변수중요도(Feature importance)가 높은 것으로 나타났다. 상기 자료의 조합을 AutoML 통해 목적함수 (Determination of coefficient, R2 ; Root Mean Square Error, RMSE; Mean Absolute Percent Error, MAPE)를 설정 후 기계학습 기법별 비교평가를 수행한 결과, Tree 계열의 모형이 높은 성능을 보였으며, 그 중, Random Forest의 성능이 가장 우수하였다(R2 : 0.72, RMSE: 2.70 vol%, MAPE: 0.14).
현대사회에서 웹을 통한 정보 제공 서비스가 늘어나면서 병원에서도 홈페이지와 E-mail을 통하여 많은 질문과 상담이 진행되고 있다. 그러나, 이것은 관리자에 대한 업무부담과 답변에 대한 응답시간 지연의 문제가 있다. 본 논문에서는 이런 질의문서에 대한 자동응답시스템의 기초연구로 문서 분류 방법을 연구하였다. 실험방법으로 1200개의 환자질의문서를 대상으로 66%는 학습문서로, 34%는 테스트문서로 활용하여 이것을 NBC(Naive Bayes Classifier), 공통색인어, 연관계수를 이용한 문선분류에 사용하였다. 문서 분류 결과, 기본적인 NBC방법 보다는 본 논문에서 제안한 두 방법이 각각 3%, 5% 정도 더 높게 나타났다. 이러한 색인어의 빈도보다, 색인어와 카테고리간의 연관성이 문서 분류에 더 효과적이라는 것을 의미한다.
Git의 커밋 메시지는 프로젝트 생명주기와 밀접한 연관성을 지니고 있으며, 이러한 특성에 의해 프로젝트 운영 활동의 위험요소와 프로젝트 현황 등을 파악하여 비용 절감과 작업효율 개선 등에 큰 기여를 할 수 있다. 이와 관련한 분야 중 커밋 메시지를 소프트웨어 유지관리의 유형으로 분류하는 많은 연구가 있으며 연구 중 최대 정확도는 87%다. 본 논문에서는 커밋 분류 모델을 이용한 솔루션 등의 활용을 목적으로 진행 하였고 기존에 발표된 모델들보다 정확도를 높여 모델의 신뢰성을 높이기 위해 여러 모델을 조합한 복합 분류 모델을 설계하고 구현하였다. 본문은 자동화 레이블링 및 소스 변경 내용을 추출하여 데이터셋을 구성하고 디스틸 버트(DistilBERT) 모델을 이용하여 학습시켰다. 검증결과 기존 연구에서 보고된 최대 87%보다 8%가 향상된 95%의 F1 점수 값을 얻어 신뢰성을 확보하였다. 본 연구 결과를 이용하면 모델의 신뢰성을 높이고 이를 이용해 소프트웨어 및 프로젝트관리 등의 솔루션에 적용이 가능할 것으로 기대된다.
Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.
유비쿼터스 컴퓨팅 환경의 급속한 발전은 Multi-Sensor를 이용하여 자동으로 사용자의 행동인식을 가능한 환경을 만들어주었다. 따라서 이 논문에서는 사용자가 일상생활을 하는데 있어서 기본적으로 필요한 행동인 ADL(activities of daily living)의 수행능력을 분석하고 진단할 수 있는 Multi-Sensor기반의 ADL 자동 진단 시스템을 구축하였다. 두 개의 가속도 센서를 허벅지와 손목에 부착하여 사용자의 행동 정보를 수집하고 이를 Decision-Tree를 통하여 분석하여 사용자의 행동 정보를 수집하였다. 또한 Zigbee 센서를 이용하여 개별 물체의 Object ID를 이용하여 사용자의 위치정보와 주변의 물체의 정보를 수집하여 사용자의 상태 정보를 수집하였다. 이렇게 수집된 행동 정보와 상태 정보들을 통하여 일상생활에 필요한 약 20여 가지의 행동을 인식하였고 평균적으로 96%이상의 정확도를 나타내었으며 이를 통하여 ADL 지수를 자동으로 측정하였다.
The discrete wavelet transform is utilized as preprocessing of Neural Network(NN) to identify aging state of internal partial discharge in transformer. The discrete traveler transform is used to produce wavelet coefficients which are used for Classification. The statistical parameters (maximum of wavelet coefficients, average value, dispersion, skewness, kurtosis) using the wavelet coefficients are input into an back-propagation neural network. The neurons whose weights have obtained through Result of Cross-Validation. The Neural Network learning stops either when the error rate achieves an appropriate minimum or when the learning time overcomes a constant value. The networks, after training, can decide if the test signal is Early Aging State or Last Aging State or normal state.
다국어로 구축된 학술정보 시스템의 통합검색 환경을 구현하기 위해서는 다국어 전문용어에 대한 해석을 제공하고 전문용어의 분야별 분류정보를 제공할 수 있는 시스템이 필요하다. 본 연구는 이러한 다국어 환경의 통합 정보검색 시스템을 운용할 수 있도록 기반시스템을 구축하는 것을 목적으로 한다. 다국어 의미망으로 상호 연결된 과학기술 전문용어 체계를 구축하는 방법과 다단계 연결노드에 대한 최단거리 탐색 기법을 소개하였다. 또한, 생성된 용어군집 결과를 해석하기 위한 기초분석을 수행하여 향후 심도있는 분석연구를 수행하기 위한 기반을 마련하고자 하였다.
As cyber-attacks on Cyber-Physical System (CPS) become more diverse and sophisticated, it is important to quickly detect malicious behaviors occurring in CPS. Since CPS can collect sensor data in near real time throughout the process, there have been many attempts to detect anomaly behavior through normal behavior learning from the perspective of data-driven security. However, since the CPS datasets are big data and most of the data are normal data, it has always been a great challenge to analyze the data and implement the anomaly detection model. In this paper, we propose and evaluate the Clustered Deep One-Class Classification (CD-OCC) model that combines the clustering algorithm and deep learning (DL) model using only a normal dataset for anomaly detection. We use auto-encoder to reduce the dimensions of the dataset and the K-means clustering algorithm to classify the normal data into the optimal cluster size. The DL model trains to predict clusters of normal data, and we can obtain logit values as outputs. The derived logit values are datasets that can better represent normal data in terms of knowledge distillation and are used as inputs to the OCC model. As a result of the experiment, the F1 score of the proposed model shows 0.93 and 0.83 in the SWaT and HAI dataset, respectively, and shows a significant performance improvement over other recent detectors such as Com-AE and SVM-RBF.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.