• Title/Summary/Keyword: Auto body

Search Result 289, Processing Time 0.031 seconds

Study of Forming Analyzing Auto-body panel by Using One-step Finite Element Method (One-Step 유한요소법을 이용한 차체판넬 성형해석에 관한 연구)

  • Jung, D.W.;Lee, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.261-264
    • /
    • 2006
  • Many process parameters have an effect on the auto-body panel forming process. A well-designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented in this paper, the one-step approach by using a finite element inverse method will be introduced to predict the initial blank shape the developed program is applied to auto-body panel forming.

  • PDF

A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method (동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

A Study of Forming Analysis by using Dynamic-Explicit Finite Element Method in Auto-Body Stamping (차체 판넬 스템핑 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

FE Analysis for Application of Isotropic Steel Sheet on Auto-Roof Panel (등방성 강판의 자동차용 Roof Panel 부품 적용 특성 해석)

  • Han S.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.241-246
    • /
    • 2006
  • The isotropic steel sheet was developed and started to apply on the auto-body outer panel, however the characteristics of application on auto-body were not well known. In this paper the FE analysis of outer panel of auto-body was carried out to investigate the characteristics of isotropic steel sheet. For the FE analysis of the roof panel of ULSAB body the isotropic steel sheet and the bake hardening steel sheet were used. The Isotropic steel sheet shows more deformation at punch bottom area of roof panel than the bake hardening steel sheet that is most required forming properties far outer panel to obtain the shape likability of forming parts. It is shown that the isotropic steel sheet has suitable material properties far outer panels of auto-body.

Testing Equipments for the Evaluation of Dynamic Tensile characteristics and the Crashworthiness of Auto-body Members (차체용 부재의 동적 인장 특성 및 충돌 특성 평가를 위한 시험장비 개발)

  • Huh, H.;Kim, S.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.21-24
    • /
    • 2007
  • This paper deals with introduction of testing equipments for the evaluation of dynamic tensile characteristics of auto-body steel sheets and the crashworthiness of auto-body members. The servo-hydraulic high speed material testing machine was developed for tensile tests at the intermediate strain rate to obtain the tensile material properties at the strain rate under 500/sec. The split Hopkinson bar apparatus using the elastic wave was developed for dynamic material characteristics at the high strain rate ranged from 1,000 to 10,000/sec. The servo-hydraulic high speed crash testing machine is the equipment for the evaluation of the collapse load and crashworthiness of auto-body members. High speed carrying truck crashes to specimen with the maximum velocity of 17 m/sec.

  • PDF

Study of Forming Analysis Auto-body Panel Using One-step Theory (One-Step 이론을 이용한 차체판넬 성형 해석에 관한 연구)

  • Ahn H.G.;KO H.H.;Lee C.H.;Ahn B.I.;Moon W.S.;Jung D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.585-588
    • /
    • 2005
  • Many process parameters have an effect on the auto-body panel forming process. A well designed blank shape causes the material to flow smoothly, reduces the punch and yields a product with uniform thickness distribution. Therefore, the determination of an initial blank shape plays the important role of saving time and cost in the auto-body panel forming process. For these reasons, some approaches to estimate the initial blank shape have been implemented, in this paper The one-step approach using a finite element inverse method will be introduced to predict the optimal forming with changing of blank pressure the developed program is applied to auto-body panel forming.

  • PDF

Optimization of Frontal Crashworthiness for the Weight Reduction Design of an Auto-body Member with the Advanced High Strength Steels (초고강도강 적용 차체 부재의 경량 설계를 위한 정면 충돌성능 최적화)

  • Kim, Kee-Poong;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.104-111
    • /
    • 2009
  • In this paper, optimization for frontal crashworthiness is carried out for the weight reduction design of an auto-body member with the advanced high strength steels(AHSS) such as 780TRIP and 780DP. The frontal crashworthiness is evaluated in order to optimize thicknesses for the front rail member of the ULSAB-AVC, Thicknesses of the front rail member with AHSS are optimized by comparison of crushing distance, absorbed energy and the deceleration for the auto-body with the response surface methodology. The results demonstrate that the crashworhiness of the front rail member with the optimum thicknesses of the AHSS is similar to analysis results obtained from the ULSAB-AVC project. The results also show that the weight reduction design is performed by substituting the AHSS for conventional structural steels such as 440E in the auto-body members.

Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process (대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석)

  • 정동원;김귀식;양동열
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

Crashworthiness of an Auto-body Member with the Forming Effect (성형 효과를 고려한 차체 구조 부재의 충돌 특성)

  • Kim, Kee-Poong;Song, Jung-Han;Huh, Hoon;Kim, Hyun-Sup;Hong, Seok-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.91-98
    • /
    • 2004
  • This paper is concerned with crash analysis for an auto-body member with the forming effect. Auto-body members such as a front frame assembly are fabricated with sheet metal forming processes that induce forming histories such as the plastic work hardening and non-uniform thickness distribution. Numerical simulation is carried out with LS-DYNA3D in order to identify the forming effect on the crashworthiness. The crash analysis of the front frame assembly with the forming effect leads to a different result from that without the forming effect. Crashworthiness such as the load-carrying capacity, the crash mode and the energy absorption are calculated to investigate and identify the forming effect. It is fully demonstrated that the design of auto-body members needs to consider the forming effect for accurate assessment of the load-carrying capacity and the deformation mechanism of the formed members.

The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis (차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석)

  • Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.