• 제목/요약/키워드: Auto Regressive Moving-average Model

검색결과 63건 처리시간 0.021초

시계열 모델 기반의 계절성에 특화된 S-ARIMA 모델을 사용한 리튬이온 배터리의 노화 예측 및 분석 (Degradation Prediction and Analysis of Lithium-ion Battery using the S-ARIMA Model with Seasonality based on Time Series Models)

  • 김승우;이평연;권상욱;김종훈
    • 전력전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.316-324
    • /
    • 2022
  • This paper uses seasonal auto-regressive integrated moving average (S-ARIMA), which is efficient in seasonality between time-series models, to predict the degradation tendency for lithium-ion batteries and study a method for improving the predictive performance. The proposed method analyzes the degradation tendency and extracted factors through an electrical characteristic experiment of lithium-ion batteries, and verifies whether time-series data are suitable for the S-ARIMA model through several statistical analysis techniques. Finally, prediction of battery aging is performed through S-ARIMA, and performance of the model is verified through error comparison of predictions through mean absolute error.

Adaptive Kalman Filter Design for an Alignment System with Unknown Sway Disturbance

  • Kim, Jong-Kwon;Woo, Gui-Aee;Cho, Kyeum-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.86-94
    • /
    • 2002
  • The initial alignment of inertial platform for navigation system was considered. An adaptive filtering technique is developed for the system with unknown and varying sway disturbance. It is assumed that the random sway motion is the second order ARMA(Auto Regressive Moving Average) model and performed parameter identification for unknown parameters. Designed adaptive filter contain both a Kalman filter and a self-tuning filter. This filtering system can automatically adapt to varying environmental conditions. To verify the robustness of the filtering system, the computer simulation was performed with unknown and varying sway disturbance.

A novel SARMA-ANN hybrid model for global solar radiation forecasting

  • Srivastava, Rachit;Tiwaria, A.N.;Giri, V.K.
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.131-143
    • /
    • 2019
  • Global Solar Radiation (GSR) is the key element for performance estimation of any Solar Power Plant (SPP). Its forecasting may help in estimation of power production from a SPP well in advance, and may also render help in optimal use of this power. Seasonal Auto-Regressive Moving Average (SARMA) and Artificial Neural Network (ANN) models are combined in order to develop a hybrid model (SARMA-ANN) conceiving the characteristics of both linear and non-linear prediction models. This developed model has been used for prediction of GSR at Gorakhpur, situated in the northern region of India. The proposed model is beneficial for the univariate forecasting. Along with this model, we have also used Auto-Regressive Moving Average (ARMA), SARMA, ANN based models for 1 - 6 day-ahead forecasting of GSR on hourly basis. It has been found that the proposed model presents least RMSE (Root Mean Square Error) and produces best forecasting results among all the models considered in the present study. As an application, the comparison between the forecasted one and the energy produced by the grid connected PV plant installed on the parking stands of the University shows the superiority of the proposed model.

자동 회귀 통합 이동 평균 모델 적용을 통한 한국의 자동차 사고에 대한 시계열 예측 (Time Series Forecasting on Car Accidents in Korea Using Auto-Regressive Integrated Moving Average Model)

  • 신현경
    • 융합정보논문지
    • /
    • 제9권12호
    • /
    • pp.54-61
    • /
    • 2019
  • 최근 들어 IITS는 스마트 시티관련 산업계에서 중요한 주제로 떠오르고 있다. IITS의 주요 목적인 교통체증 (차량 사고에 기인한) 예방책들이 발전된 센서 및 통신 기술의 도움을 받아 다양하게 시도되었다. 관련 연구들에서는 자동차 사고와 사고 위치적 특성, 날씨, 운전자 행동, 시간 등 다양한 요인들과 상관 관계가 있음을 보여주고 있다. 우리 연구는 자동차 사고와 사고 발생 시간 사이의 상관관계에 주제를 집중했다. 본 논문에서는 ARIMA (Auto-Regressive Integrated Moving Average) 자동 회귀, 정상 및 지연 순서를 결정하는 세 가지 요소를 확인하기 위해 ADF (Augmented Dickey-Fuller)를 포함한 ARIMA 테스트를 수행했다. 본 연구 결과로서 시간 별 자동차 충돌 수 예측에 대한 요약을 제시하며, 한국 내 자동차 사고 데이터는 ARIMA 모델에 적용될 수 있음을 보여주었고, 국내 자동차 사고는 하루를 기준으로 일정한 주기가 존재하는 성격을 가지고 있다는 것을 제시했다.

ARMA 모델을 이용한 모바일 셀룰러망의 예측자원 할당기법 (Predictive Resource Allocation Scheme based on ARMA model in Mobile Cellular Networks)

  • 이진이
    • 한국항행학회논문지
    • /
    • 제11권3호
    • /
    • pp.252-258
    • /
    • 2007
  • 무선모바일 통신망에서는 사용자의 이동성보장 기술과 사용자가 요구하는 서비스품질(QoS)을 만족시키기 위한 효율적인 무선자원관리기술이 많이 연구되어 왔다. 본 연구에서는 시계열 예측기법(Time series prediction) 인 ARMA(Auto Regressive Moving Average) 모델을 이용하여 사용자가 요구하는 자원의 양을 예측하여 동적으로 자원을 할당함으로써 사용자의 이동성에 따른 QoS를 보장할 수 있는 자원할당방법을 제안한다. 제안한 방법은 ARMA 예측모델을 사용하여 이전에 핸드오프연결이 사용한 채널 수를 기초로 앞으로 필요로 하는 채널 수를 예측하여 예약함으로써 원하는 핸드오프 손실률에서 서비스가 이루어지도록 한다. 시뮬레이션을 통하여 기존의 RCS(Reserved channel scheme) 방법과 비교하여 핸드오프 연결의 손실률과 자원의 이용률에서 우수함을 보인다.

  • PDF

ARIMA모형을 이용한 코로나19 확진자수 예측 (Prediction of Covid-19 confirmed number of cases using ARIMA model)

  • 김재호;김장영
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1756-1761
    • /
    • 2021
  • 2019년 12월경 후베이 우한시에서 발생한 코로나19 바이러스가 점차 줄어드는 듯 보였으나, 2020년 11월, 2021년 6월 기준으로 점차 늘어나고 있으며, 전세계적으로 총 1억 9천 2백만명, 대한민국 기준 총 확진자는 대략 18만4천명으로 추정된다. 이에 따른 대책으로 중앙재난안전대책본부는 사회적 거리두기 4단계를 시행하면서 강력한 대응책을 내고있지만, 델타바이러스등 전염성이 강한 코로나 변이 바이러스가 기승을 부리면서 국내 일일 확진자 수는 1800명대 까지 증가하게 되었다. 그에따라 코로나바이러스의 심각성을 강조하고자 코로나 누적 확진자 수를 ARIMA 알고리즘을 이용해 예측한다. 그 과정에서 추세와 계절성을 제거하기 위해서 차분을 이용하고, MA, AR, 자기상관함수와 편자기상관함수를 이용해 ARIMA에서 p,d,q값을 결정하고 예측한다. 마지막으로 예측값과 실제값을 비교해 얼마나 잘 예측되었는지 평가한다.

Prediction of Hydrogen Masers' Behaviors Against UTCr with R

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권2호
    • /
    • pp.89-98
    • /
    • 2020
  • Prediction of clock behaviors is necessary to generate very high stable system time which is essential for a satellite navigation system. For the purpose, we applied the Auto-Regressive Integrated Moving Average (ARIMA) model to the prediction of two hydrogen masers' behaviors with respect to the rapid Coordinated Universal Time (UTCr). Using the packaged programming language R, we made an analysis and prediction of time series data of [UTCr - clocks]. The maximum variation width of the residuals which were obtained by the difference between the predicted and measured values, was 6.2 ns for 106 days. This variation width was just one-sixth of [UTCr-UTC (KRIS)] published by the BIPM for the same period. Since the two hydrogen masers were found to be strongly correlated, we applied the Vector Auto-Regressive Moving Average (VARMA) model for more accurate prediction. The result showed that the prediction accuarcy was improved by two times for one hydrogen maser.

자동 공조설비의 고장 검출 기술 (Fault Detection in an Automatic Central Air-Handling Unit)

  • 이원용;신동열
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.410-418
    • /
    • 1999
  • This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit.

  • PDF

동적 모형에 의한 예측치의 정도 향상에 관한 연구 (A Study on increasing the fitness of forecasts using Dynamic Model)

  • 윤석환;윤상원;신용백
    • 산업경영시스템학회지
    • /
    • 제19권40호
    • /
    • pp.1-14
    • /
    • 1996
  • We develop a dynamic demand forecasting model compared to regression analysis model and AutoRegressive Integrated Moving Average(ARIMA) model. The dynamic model can apply to the current dynamic data to forecasts through introducing state equation. A multiple regression model and ARIMA model using given data are designed via the model analysis. The forecasting fitness evaluation between the designed models and the dynamic model is compared with the criterion of sum of squared error.

  • PDF

강우 및 지점특성치를 이용한 계절형 다변량 시계열 모형 구축 평가 및 비교 (Evaluation and Comparison of seasonal multivariate time series model construction with rainfall and site characteristics)

  • 김태림;최원영;신홍준;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.29-29
    • /
    • 2015
  • 수자원의 지속적인 관리 및 효율적인 활용을 위하여 수문량의 예측과 분석은 필수적인 과정이라 할 수 있으며 이에 따라 다양한 수문 모형이 구축되고 강우, 유량 등 대표적인 수문량의 예측이 수행되어져 왔다. 그 중에서도 수문 시계열 모형은 시간의 흐름에 따라 일정하게 기록되어온 수문 자료를 확률적인 과정을 통하여 모형을 구축하고 이를 바탕으로 미래 수문량을 예측하는 데활용되는 모형으로, 과거에 기록된 수문 패턴이 미래에도 지속된다는 가정 하에 구축된다. 일반적으로 시계열 모형은 하나의 자료계열로 모형을 구축하는 단변량 모형과 원 자료계열 외에 다른 자료계열을 고려하여 모형을 구축하는 다변량 모형이 있으며, 다변량 모형은 원 자료계열에 영향을 미치는 외부변수를 고려함으로써 두 자료계열간의 상관성을 모형에 반영할 수 있는 장점을 가지고 있다. 또한 자료계열의 계절성을 고려하여 시계열 모형을 구축할 경우, 수문 시계열이 가지고 있는 계절적 영향을 잘 반영할 수 있다. 따라서 본 연구에서는 계절성을 고려한 다변량 시계열 모형인 SARIMAX(Seasonal AutoRegressive Integrated Moving Average with eXogenous) 모형을 이용하여 대표적인 수공구조물인 댐의 유입량 예측을 수행하였다. 일반적으로 댐 유입량 예측에는 댐의 유입량과 상관성이 높은 강우가 외부변수로 사용되어져 왔으나, 이 외에도 영향을 미칠 수 있는 지점특성치를 고려하여 모형을 구축한 후 비교하였다.

  • PDF