The text categorization is an important field for the automatic text information processing. Moreover, the authorship identification of a text can be treated as a special text categorization. This paper adopts the conceptual primitives' expression based on the Hierarchical Network of Concepts (HNC) theory, which can describe the words meaning in hierarchical symbols, in order to avoid the sparse data shortcoming that is aroused by the natural language surface features in text categorization. The KNN algorithm is used as computing classification element. Then, the experiment has been done on the Chinese text authorship identification. The experiment result gives out that the processing mode that is put forward in this paper achieves high correct rate, so it is feasible for the text authorship identification.
Objectives : We would like to study what is the most appropriate "feature" to effectively perform authorship attribution of the text of Traditional East Asian Medicine Methods : The authorship attribution performance of the Support Vector Machine (SVM) was compared by cross validation, depending on whether the function words or content words, single word or collocations, and IDF weights were applied or not, using 'Variorum of the Nanjing' as an experimental Corpus. Results : When using the combination of 'function words/uni-bigram/TF', the performance was best with accuracy of 0.732, and the combination of 'content words/unigram/TFIDF' showed the lowest accuracy of 0.351. Conclusions : This shows the following facts from the authorship attribution of the text of East Asian traditional medicine. First, function words play an important role in comparison to content words. Second, collocations was relatively important in content words, but single words have more important meanings in function words. Third, unlike general text analysis, IDF weighting resulted in worse performance.
According to rapid development of technology, web text is growing explosively and attracting many fields as substitution for survey. The user of Facebook is reaching up to 113 million people per month, Twitter is used in various institution or company as a behavioral analysis tool. However, many research has focused on meaning of the text itself. And there is a lack of study for text's creation subject. Therefore, this research consists of sex/age text classification with by using 20,187 Facebook users' posts that reveal the sex and age of the writer. This research utilized Convolution Neural Networks, a type of deep learning algorithms which came into the spotlight as a recent image classifier in web text analyzing. The following result assured with 92% of accuracy for possibility as a text classifier. Also, this research was minimizing the Korean morpheme analysis and it was conducted using a Korean web text to Authorship Attribution. Based on these feature, this study can develop users' multiple capacity such as web text management information resource for worker, non-grammatical analyzing system for researchers. Thus, this study proposes a new method for web text analysis.
본고에서는 빈도 정보를 이용한 저자 판별 (authorship attribution) 기법을 한국어에 적용한 연구를 소개한다. 그 대상으로는 정형화된 장르인 신문 칼럼을, 구체적으로는 조선일보에 연재 중인 4인 칼럼니스트들의 각 40개 칼럼, 총 160개 칼럼 텍스트를 선정하였다. 이들에 대하여 어절, 음절, 형태소, 각 단위 2연쇄 등의 다양한 언어 단위들의 빈도 정보들을 이용한 저자 판별을 시도한 결과, 형태소 빈도를 기반으로 하여 최고 93%를 넘는 높은 예측 정확도를 얻을 수 있었다. 또한, 저자 개인 문체간의 거리도 빈도 정보로써 계량적 표상이 가능함을 보일 수 있었다. 이로써 빈도 분석과 같은 통계적, 계량적 방법을 통하여 한국어 텍스트에 대한 성공적인 저자 판별과 개인 문체의 정량화가 가능하다는 결론을 내릴 수 있다.
International Journal of Computer Science & Network Security
/
제21권7호
/
pp.317-323
/
2021
Social media is increasingly becoming a part of our daily life for communicating each other. There are various tools and applications for communication and therefore, identity theft is a common issue among users of such application. A new style of identity theft occurs when cybercriminals break into WhatsApp account, pretend as real friends and demand money or blackmail emotionally. In order to prevent from such issues, data mining can be used for text classification (TC) in analysis authorship attribution (AA) to recognize original sender of the message. Arabic is one of the most spoken languages around the world with different variants. In this research, we built a machine learning model for mining and analyzing the Arabic messages to identify the author of the messages in Saudi dialect. Many points would be addressed regarding authorship attribution mining and analysis: collect Arabic messages in the Saudi dialect, filtration of the messages' tokens. The classification would use a cross-validation technique and different machine-learning algorithms (Naïve Baye, Support Vector Machine). Results of average accuracy for Naïve Baye and Support Vector Machine have been presented and suggestions for future work have been presented.
최근 사이버보안에서 악성코드를 이용한 공격은 메일에 악성코드를 첨부하여 이를 사용자가 실행하도록 유도하여 공격을 수행하는 형태가 늘어나고 있다. 특히 문서형태의 파일을 첨부하여 사용자가 쉽게 실행하게 되어 위험하다. 저자 분석은 NLP(Neutral Language Process) 및 텍스트 마이닝 분야에서 연구되어지고 있는 분야이며, 특정 언어로 이루어진 텍스트 문장, 글, 문서를 분석하여 작성한 저자를 분석하는 방법들은 연구하는 분야이다. 공격 메일의 경우 일정 공격자에 의해 작성되어지기 때문에 메일 내용 및 첨부된 문서 파일을 분석하여 해당 저자를 식별하면 정상메일과 더욱 구별된 특징들을 발견할 수 있으며, 탐지 정확도를 향상시킬 수 있다. 본 논문에서는 기존의 기계학습 기반의 스팸메일 탐지 모델에서 사용되는 특징들과 문서의 저자 분석에 사용되는 특징들로부터 공격메일을 분류 및 탐지를 할 수 있는 feature vector 및 이에 적합한 IADA2(Intelligent Attack mail Detection based on Authorship Analysis)탐지 모델을 제안하였다. 단순히 단어 기반의 특징들로 탐지하던 스팸메일 탐지 모델들을 개선하고, n-gram을 적용하여 단어의 시퀀스 특성을 반영한 특징을 추출하였다. 실험결과, 특징의 조합과 특징선택 기법, 적합한 모델들에 따라 성능이 개선됨을 검증할 수 있었으며, 제안하는 모델의 성능의 우수성과 개선 가능성을 확인할 수 있었다.
In the history of the study of Shakespeare's texts the eighteenth century marked the emergence of editors, and in the history of Shakespearean editing Edmond Malone's emphasis on documentary evidence inaugurated a new stage. Malone's antiquarian scholarship sought to establish Shakespeare in the theatrical context of his age and a historically informed view of the physical circumstances under which he wrote his plays. Malone's editorial use of historical sources in terms of Shakespeare's past formulated a new mode of ascertaining his authorship: the construction of Shakespeare as a man of the theatre as well as of literature. Malone was the first scholar to recognize Shakespeare's merits as an actor, and to introduce the concept of the theatrical Shakespeare, which has become the scholarly norm since. In this respect this paper is designed to demonstrate that Malone's editorial principle and practice are characteristic of the identification of the factual documents of Shakespeare's biography, the authentication of his material to attain his true text, and the construction of his personal experiences through intensive readings of his plays. In conclusion, Malone's new criteria laid the foundation for the progress towards authorizing Shakespeare, thereby canonizing him as a figure of the theatrical and literary authority.
최근 인터넷 기술이 발전함에 따라 다양한 프로그램들이 만들어지고 있고 이에 따라 다양한 코드들이 많은 사람들을 통해 만들어진다. 이러한 측면을 이용하여 특정 작성자가 작성한 코드들 그대로 가져가 자신이 작성한 것처럼 보여주거나, 참고한 코드들에 대한 정확한 표기 없이 그대로 사용하여 이에 대한 보호가 점차 어려워지고 있다. 따라서 본 논문에서는 작성자 분석 이론과 합성곱 신경망 기반 자연어 처리 방법을 적용한 작성자 식별 프레임워크룰 제안한다. 작성자 분석 이론을 적용하여 소스 코드에서 작성자 식별에 적합한 특징들을 추출하고 이를 텍스트 마이닝에서 사용하고 있는 특징들과 결합하여 기계학습 기반의 작성자 식별을 수행한다. 그리고 합성곱 신경망 기반 자연어 처리 방법을 소스 코드에 적용하여 코드 작성자 분류를 수행한다. 본 논문에서는 작성자 분석이론과 합성곱 신경망을 적용한 작성자 식별 프레임워크를 통해 작성자를 식별하기 위해서는 작성자 식별만을 위한 특징들이 필요하다는 것과 합성곱 신경망 기반 자연어 처리 방법이 소스 코드등과 같은 특수한 체계를 갖추고 있는 언어에서도 적용이 가능하다. 실험 결과 작성자 분석 이론 기반 작성자 식별 정확도는 95.1%였으며 CNN을 적용한 결과 반복횟수가 90번 이상일 경우 98% 이상의 정확도를 보여줬다.
인터넷의 확산과 정보 교환, 배포와 수집 기술에 대한 의존도의 증대로 과거와는 비교할 수 없는 대용량의 데이터가 생성되었다. 대용량 데이터를 식별하고 가려내는 작업은 가까운 미래에 오늘날의 컴퓨터 과학의 상당 부분을 새롭게 정의할 것으로 예상된다. 여러 관련 분야에서 반복되는 중요한 과제는 재식별의 문제이다. 광범위한 정의에서, 재식별 문제는 과거에 인식된 객체를 다시 식별하는 문제이다. 예를 들면, 여러 장소에 설치된 감시 카메라에 포착된 어떤 사람을 추적하는 문제가 이에 해당한다. 본 논문에서는 서로 다른 분야에서 이 과제를 어떻게 정의하고, 이 과제를 어떻게 해결하는가에 대해 비교 분석한다. 비디오 감시에서 사람 재식별, 텍스트 샘플에서 저자 식별, 사진 선호도에 따른 사용자 식별 등이 이에 포함된다. 본 논문은 또한 학제간 해결 방안이 장점을 지니는 상황에 대한 비전을 제시한다.
This paper aims to illustrate and illuminate the relationship between language and its neighbor disciplines, in particular between language and literature, language and religion, and language and music. 1. Language and literature. Literature is an art of language. Therefore, linguistics, the science of language, should be able to explain how the grammar of literature elevates and ordinary language into a literary language. I illustrate poetic syntax with examples from Shelley, Coleridge, and Wordsworth. 2. Language and religion. I show how a linguistic analysis of a religious text can illuminate the background, authorship, chronology, etc., of a religious text with an example from the Book of Daniel. I also illustrate how a misanalysis of a poetic meter led to a mistranslation with an example from the Book of Psalms. 3. Language and music. First I trace an epochal event in the history of the Western music, i.e., the change of the musical style from the liturgical music of Latin in which the rhythm was created by the alternation of syllable duration into the liberated music of German in which the rhythm was generated by the alternation of lexical stress. I then illustrate a parallelism between linguistic and musical structures with several musical pieces including Gregorian chant, the 16th century music of Palestrina, the 17th century music of Schutz, the 18th century music of Mozart, and the 19th century Viennese music. Finally, the importance of text-tune (verse-melody) association is discussed with examples of mismatches in translated Korean hymns and contemporary Korean lyrical songs. In the concluding part, I speculate on some factors that are responsible for the same organizational devices in three different modes of human communication. An answer may be that all are under the same laws of mind that govern the way man perceives and organizes nature, i.e., the same cognitive abilities of man, in particular, the capacity to organize and impose structure on their respective inputs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.