• Title/Summary/Keyword: Austenitic stainless steel

Search Result 416, Processing Time 0.047 seconds

The Effect of Nickel and Nitrogen on Cryogenic Properties of Austenitic Stainless Steel (냉간가공한 오스테나이트계 강재의 극저온 특성에 미치는 Ni 및 N의 영향)

  • 최진일;주기남;강영환
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.64-70
    • /
    • 2004
  • Cryogenic characteristics of austenitic stainless steel based on 304 steel with nickel and nitrogen were investigated at room temperature and $-196^{\circ}C$. The alloys were fabricated by vacuum arc furnace and cold working after homogenization treatment. The addition of nickel and nitrogen decreased the stability of $\delta$-ferrite and induced the stability against the formation of martensite to result significantly in enhancing ductility at $-196^{\circ}C$. Nitrogen reduced Md temperature, which was beneficial to the tensile strength and elongation at $25^{\circ}C$ and -196$^{\circ}C$.

Effect of alloying Copper on the Corrosion Resistance of Stainless Steels in Chloride Media

  • Ujiro, T.;Satoh, S.;Staehle, R.W.;Smyrl, W.H.
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.127-134
    • /
    • 2003
  • In order to explain the effect of alloying Cu on the corrosion resistance of stainless steels in chloride media for both ferritic and austenitic stainless steels, the corrosion behavior of Cu-bearing stainless steels was investigated. Alloying Cu showed beneficial effect in an active potential range and harmful effect in a noble potential range. The beneficial effect of alloying Cu was explained by the stability of deposited Cu on an anodic surface. Difference in the effect of alloying Cu between the ferritic and austenitic steels was ascribed by the differences in their corrosion potentials and the morphology of the deposited Cu.

Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods (하이드라진으로 환원시킨 그래핀을 코팅한 오스테나이트와 마르텐사이트 스테인리스 강 고체고분자형 연료전지 금속 분리판의 전기화학적 특성 평가)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.92-107
    • /
    • 2016
  • Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.