• Title/Summary/Keyword: Aureobasidium pullulans

Search Result 96, Processing Time 0.026 seconds

Efficacy Test of Polycan, a Beta-Glucan Originated from Aureobasidium pullulans SM-2001, on Anterior Cruciate Ligament Transection and Partial Medial Meniscectomy-Induced-Osteoarthritis Rats

  • Kim, Joo-Wan;Cho, Hyung-Rae;Ku, Sae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.274-282
    • /
    • 2012
  • The object of this study was to assess the efficacy of Polycan from Aureobasidium pullulans SM-2001, which is composed mostly of beta-1,3-1,6-glucan, on osteoarthritis (OA)-induced by anterior cruciate ligament transection and partial medial meniscectomy (ACLT&PMM). Three different dosages of Polycan (85, 42.5, and 21.25 mg/kg) were orally administered once a day for 84 days to male rats a week after ACLT&PMM surgery. Changes in the circumference and maximum extension angle of each knee, and in cartilage histopathology were assessed using Mankin scores 12 weeks after Polycan administration. In addition, cartilage proliferation was evaluated using bromodeoxyuridine (BrdU). As the result of ACLT&PMM, classic OA was induced with increases in maximum extension angles, edematous knees changes, and capsule thickness, as well as decreases in chondrocyte proliferation, cartilages degenerative changes, and loss of articular cartilage. However, these changes (except for capsule thickness) were markedly inhibited in all Polycan- and diclofenac sodium-treated groups compared with OA control. Although diclofenac sodium did not influence BrdU uptake, BrdU-immunoreactive cells were increased with all dosages of Polycan, which means that Polycan treatment induced proliferation of chondrocytes in the surface articular cartilage of the tibia and femur. The results obtained in this study suggest that 84 days of continuous oral treatment of three different dosages of Polycan led to lesser degrees of articular stiffness and histological cartilage damage compared with OA controls 91 days after OA inducement, suggesting that the optimal Polycan dosage to treat OA is 42.5 mg/kg based on the present study.

Anti-mutagenic and Anti-septic Effects of $\beta$-glucan from Aureobasidium pullulans SM-2001 (흑효모유래 $\beta$-glucan의 패혈증 치료효과 및 항돌연변이 활성 평가)

  • Ku, Sae-Kwang
    • Korean Journal of Oriental Medicine
    • /
    • v.15 no.3
    • /
    • pp.75-82
    • /
    • 2009
  • Anti-mutagenic and anti-septic effects of $\beta$-1,3/1,6-glucan from Aureobasidium pullulans SM-2001 were evaluated on the on the cyclophosphamide (CPA)-cecal ligation puncture (CLP) and CPA-treated mice. To induce immunosuppression and mutagenicity, 150 and 110 mg/kg of CPA were single intraperitoneally injected at 3 or 1 day before CLP or initial $\beta$-glucan administration. In CLP animals, the cecum was mobilized and ligated below the ileocecal valve, punctured through both surfaces twice with a 22-gauge needle. 125 mg/kg of $\beta$-glucan were dissolved in saline and subcutaneously or orally administered in a volume of 10 ml/kg (of body weight), 4 times, 12 hrs intervals from 6 hrs after CLP or 1 day after second dose of CPA. After treatment of $\beta$-glucan, the mortalities were observed in CPA-CLP model, and the appearance of a micronucleus is used as an index for genotoxic potential in CPA model. As results of CPA-CLP sepsis, all animals (9/9, 100%) in CPA-CLP control were dead within 2 days after CLP. In addition, increase of the number of bone marrow MNPCEs indicated mutagenicity were also observed by treatment of CPA. However, $\beta$-glucan treatment effectively inhibited the mortalities in CPA-CLP, and it also reduced the CPA treatment-related mutagenicity, respectively. These results indicated that $\beta$-glucan has effective anti-septic and anti-mutagenic effects and can be used as an agents for treating sepsis and mutagenicity related to high-dose chemotherapy or radiotherapy. However, further studies should be conducted to observe more detail action mechanisms of it's anti-septic and anti-mutagenic effects.

  • PDF

Effect of Dissolved Oxygen Concentration and pH on the Mass Production of High Molecular Weight Pullulan by Aureobasidium pullulans

  • LEE, JI-HYUN;JEONG-HWA KIM;MI-RYUNG KIM;SUNG-MI LIM;SOO-WAN NAM;JIN-WOO LEE;SUNG-KOO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The effects of DO and pH on the mass production of pullulan with high molecular weight and the morphology of A. pullulans ATCC 42023 were evaluated. A. pullulans showed a maximum production of pullulan (11.98 g/l) when the initial pH of the culture broth was 6.5 in a shake-flask culture. In a batch culture, the mixture of a yeast-like and mycelial cell forms was found at a pH of 4.5, and the maximum production of pullulan (13.31 g/l) was obtained. However, a high proportion of high molecular weight pullulan (M.W.>2,000,000) was produced at a pH of 6.5, with a yeast-like morphology. The maximum pullulan production yield ($51\%$) was obtained at a pH noncontrol (initial pH 6.5) and DO control (above $50\%$) condition. Pullulan degrading enzyme was activated when the pH of the broth was lower than 5.0 and the portion of low molecular weight pullulan was increased. The formation of a black pigment was observed at an initial stationary phase, at 40 h of fermentation. Therefore, the fermentation should be carried out in a pH noncontrol (initial pH of 6.5) and DO control (above $50\%$) condition, and should be harvested before reaching the stationary phase (around 40 h) for the production of high molecular weight pullulan.

Transcriptomic Insights into Abies koreana Drought Tolerance Conferred by Aureobasidium pullulans AK10

  • Jungwook Park;Mohamed Mannaa;Gil Han;Hyejung Jung;Hyo Seong Jeon;Jin-Cheol Kim;Ae Ran Park;Young-Su Seo
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of Au. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with Au. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance. Our findings revealed a predominance of downregulated genes in the treated seedlings, suggesting a strategic reallocation of resources to enhance stress defense. Further exploration of enriched Kyoto Encyclopedia of Genes and Genomes pathways and protein-protein interaction networks revealed significant alterations in functional systems known to fortify drought tolerance, including the terpenoid backbone biosynthesis, calcium signaling pathway, pyruvate metabolism, brassinosteroid biosynthesis, and, crucially, flavonoid biosynthesis, renowned for enhancing plant drought resistance. These findings deepen our comprehension of how AK10 biostimulation enhances the resilience of A. koreana to drought stress, marking a substantial advancement in the effort to conserve this endangered tree species through environmentally sustainable treatment.

Exopolysaccharide Production by Aureobasidium pullulans - Appearance of Melanin Pigment - (Aureobasidium pullulans 에 의한 Exopolysaccharide 생산 - 멜라닌 색소의 출현에 관한 연구 -)

  • 김재형;이기영;강성홍
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.134-142
    • /
    • 1989
  • In exopolysaccharide fermentation by Aureobasidium pulluans, the effects culture conditions (concentration of nitrogen, potassium phosphate, dissolved oxygen, and initial pH) on the production of exopolysaccharide and the appearance of melanin pigment were investigated. The results are as follows. (1) The specific growth rate and the specific production rate of exopolysaccharide were inhibited by substrate when the carbon source concentration higher than $50g\;/\;{\ell}$ and the cell growth increased with increases of nitrogen source but exopolysaccharide production decreased with the nitrogen concentration when it become greater than $1\;g\;/\;{\ell}$. (2) The maximum cell growth and the maximum exopolysaccharide production were obtained at initial pH values of 3.0 and 7.5 respectively. As the initial pH increased, the yeast-like cells increased and the increased of dissolved oxygen increased the cell growth and exopolysaccharide production. (3) As the concentration of dissolved oxygen is increased or the concentration of nitrogen source is decreased, the period of melanin pigment appearance becomes shorter and the melanin pigment never appeared when the initial pH was less than 3.0 or the potassium phosphate was not added.

  • PDF

O1igosaccharide Formation and Production of Transfructosylase and Transglucosylase by Aureobasidium pullulans (Aureobasidium pullulans가 생산하는 과당 및 포도당 전이효소에 의한 올리고당류의 생산)

  • 윤종원;윤태경한성범송승구
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.133-139
    • /
    • 1994
  • Oligosaccharide formation and the production of transfructosylase and transglucosylase by Aureobasidium pullulans were studied in sucrose or maltose media, respectively. The initial uptake rates of substrate in sucrose-rich media were faster than that in maltose-rich media, also most parts of oligosaccharides formed and other monosaccharides released were utilized progressively as substrate during the cultivation periods. However, when the initial amount of sucrose was raised to $100g/\ell$, high concentration of monosaccharides were liberated, consequently high-level fructose was accumulated unused during fermentation. The biggest molecule of oligosaccharide synthesized was hexasaccharide in all cultivation media examined, of which the organism could not utilize isomalto-oligosaccharide of DP6 synthesized in a maltose-rich medium. The maximum amount of oligosaccharides produced was $58g/\ell$ when $100g/\ell$ of sucrose and $5g/\ell$ of maltose were used as initial substrate. From the early stage of growth both fructooligosaccharides and isomalto-oligosaccharides were synthesized and progressively utilized as substrates during the fermentation. Based on the experimental results, it was suggested that maltose could induce both transfructosylase and transg1ucosylase, whereas sucrose was unable to slimulate transglucosylase formation.

  • PDF

A Study on the Availability of Activated Sludge for the $Pb^{2+}$ Removal in Aqueous Solution (수용액중 납이온 제거를 위한 활성슬러지의 이용가능성에 관한 연구)

  • 김동석;서정호
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.697-705
    • /
    • 1998
  • $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate were compared between non-biomaterials (granular activated carbon, powdered activated carbon, ion exchange resin, zeolite) and biomaterials (activated sludge, Aureobasidium pullulans, Saccharomyces cerevisiae). The $Pb^{2+}$ removal capacity of biomaterials were greater than that of non-biomaterials, generally. The $Pb^{2+}$ removal capacities of non-biomaterials and biomaterials were shown on the order of ion exchange resin > zeolite > granular activated carbon > powdered activated carbon and A. pullulans > S. cerevisiae > activated sludge, respectively. In the initial $Pb^{2+}$ removal rate, the non-biomaterials showed powdered activated carbon > granular activated carbon > zeolite > ion exchange resin and the biomaterials showed A. pullulans > activated sludge > S. cerevisiae. Comparing the $Pb^{2+}$ removal capacity and initial $Pb^{2+}$ removal rate of activated sludge with those of other non-biomaterials and biomaterials, activated sludge may have an availability on the removal of heavy metal ions by the economical and pratical aspects.

  • PDF

Optimization of C/N ratio for production of pullulan

  • Seo, Hyeong-Pil;Kim, Hyeon-Suk;Kim, Mi-Ryeong;Kim, Seong-Gu;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.259-262
    • /
    • 2000
  • The production of pullulan by Aureobasidium pullulans HP-2001 was investigated under various ratios of glucose as carbon source and yeast extract as the nitrogen source, Highest conversion rate (productivity) of glucose to pullulan was 40.0% when concentrations of glucose and yeast extract were 5% and 0.15%, respectively. Maximal production of pullulan was 29.3g/1 when the concentration of glucose was 8%(w/v) and that of yeast extract was 40:1. On basis of the result that production of pullulan was found in a medium which concentration of glucose as carbon source was up to 20%(w/v), Aureobasidium pullulans HP-2001 seemed to overcome the catabolite repression. Conversion rate of pullulan from 20%(w/v) of glucose was 11.1%.

  • PDF

Production of Fructo-oligosaccharides by the Fructosyltransferase Immobilized onto an lon-exchange Resin (이온교환수지에 고정화된 Fructosyltransferase를 이용한 Fructo-oligosaccharides의 생산)

  • 윤종원;이민규송승구
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.307-312
    • /
    • 1993
  • A fructosyltransferase from Aureobasidium pullulans was immobilized onto a polystyrene-type anionic ion-exchange resin and the production of fructo-oligosaccharides was Investigated by the immobilized enzyme. The optimum pH and the temperature of immobilized enzyme were found to be pH 5.0, $55^{\circ}C$ respectively. The thermal stability of the enzyme was greatly enhanced after immobilization. The reaction profiles of the immobilized enzyme was almost identical to those of the free cells and the soluble enzyme. The immobilized enzymes were stable up to 20 cycles without loss of initial activity in a repeated-batch operation $50^{\circ}C$.

  • PDF