• Title/Summary/Keyword: Auger

Search Result 557, Processing Time 0.035 seconds

이온주입 에너지에 따른 Auger Si KLL Peak Shift 및 Ti 계열 화합물의 Chemical State 관찰

  • Heo, Sung;Park, Yoon-Baek;Min, Gyung-Yeol;Lee, Sun-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.83-83
    • /
    • 1999
  • 본 연구에서는 Auger Elecrtron Spectroscopy (AES) 장비를 이용하여 Silicone Wafer 표면에 BF 이온을 주입시킨 후 Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화를 관찰하였다. 또한 PVD Ti 계열 화학물의 시료에 대하여 Peak의 Shape 변화를 관찰하였다. 1)Dopping 농도 및 Implantation 에너지에 따른 Si KLL Peak의 변화 관찰 일반적으로 Silicone 기판에 Arsenic(3가)을 Dopping 하였을 경우, Si KLL Peak의 Kinetic Energy 값은 순수 Si Peak보다 더 작은 값으로 Shift 하며, Boron (5가)을 Dopping하였을 경우에는 더 큰 값으로 Shift 한다. 이론적으로 N-type Si의 에너지 차이는 약 1.0eV로 보고되어 있으며, AES를 이용하여 실험적으로 측정된 값은 약 0.6eV정도로 알려져 있다. 이러한 차이는 Dopping 농도에 따라 Valance Band의 에너지 값이 변화하기 때문이라고 알려져 있다. 본 연구에서는 BF2를 Si에 이온 주입하여 입사 에너지 및 dose 량에 따른 Si KLL Peak의 변화를 관찰하였다. 그림1과 같이 Si KLL Peak는 Implantation Energy가 작을수록 Kinetic Energy가 높은 곳으로 Shift 한다. 이는 LOw Energy로 이온 주입하면, Projected Range (Rp)가 High Energy로 이온 주입할 때보다 작기 때문이며, 이 결과를 Secondary Ion Mass Spectroscopy (SIMS) 및 TRIM simulation을 이용하여 확인하였다. 또한 표면에서의 전자 Density의 변화와 Implantation energy와의 관계를 시료의 표면에서 반사되어 나오는 전자의 에너지 손실(Reflected Electron Energy Loss Spectroscopy:REELS)을 통하여 고찰하였다. 2) PVD Ti 계열화합물의 시료에 대한 peak의 shape 가 변화하며, TiL3M23V (Ti2) 및 TiL3M23M23 (Til) Peak의 Intensity Ratio가 변화한다. 따라서 본 연구에서는 그림 2와 같이 Ti 결합 화합물에서의 Ti Auger Peak의 특성 에너지 값과 Peak Shape를 관찰하여, AES를 이용하여 Ti 계열의 화합물에 대한 Chemical state 분석의 가능성을 평가하였다.

  • PDF

Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides (나노급 Ir 삽입 니켈실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Yoon, Ki-Jeong;Lee, Tae-Hyun;Kim, Moon-Je
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.207-214
    • /
    • 2007
  • We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300-1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates shoed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Study on Auger Recombination Control using Barrier SiO2 in High-Quality Polysilicon/Tunneling oxide based Emitter Formation (고품질 polysilicon/tunneling oxide 기반의 에미터 형성 공정에서의 Auger 재결합 조절 연구)

  • Huiyeon Lee;SuBeom Hong;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.31-36
    • /
    • 2024
  • Passivating contacts are a promising technology for achieving high efficiency Si solar cells by reducing direct metal/Si contact. Among them, a polysilicon (poly-Si) based passivating contact solar cells achieve high passivation quality through a tunnel oxide (SiOx) and poly-Si. In poly-Si/SiOx based solar cells, the passivation quality depends on the amount of dopant in-diffused into the bulk-Si. Therefore, our study fabricated cells by inserting silicon oxide (SiO2) as a doping barrier before doping and analyzed the barrier effect of SiO2. In the experiments, p+ poly-Si was formed using spin on dopant (SOD) method, and samples ware fabricated by controlling formation conditions such as existence of doping barrier and poly-Si thickness. Completed samples were measured using quasi steady state photoconductance (QSSPC). Based on these results, it was confirmed that possibility of achieving high Voc by inserting a doping barrier even with thin poly-Si. In conclusion, an improvement in implied Voc of up to approximately 20 mV was achieved compared to results with thicker poly-Si results.

A Comparison of Soil Hydraulic Conductivities Determined by Three Different Methods in a Sandy Loam Soil (토양(土壤)의 포화투수계수(飽和透水係数) 측정법(測定法) 비교(比較) 연구(硏究))

  • Park, Moo-Eon;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.14-19
    • /
    • 1983
  • Comparison and evaluation of various wellknown methods to determine the saturated hydraulic conductivity of soil were attempted in order to choose a convenient and reliable method applicable, at least, to Bonryang sandy loam (coarse loamy over sandy, mixed, mesic family of Typic Udifluvents). Three experimental methods, inversed auger hole, infiltrometer, and core sample method, were used for this purpose. The results were summarized as follows: 1. The inversed auger hole method was highly correlated with the infiltrometer method while the core sample method was poorly correlated with other two methods. 2. The inversed auger hole method was proved to be convenient and reliable method to measure the hydraulic conductivity of upland coarse textured soils in situ. 3. The hydraulic conductivity determined by the infiltrometer method converged to a constant value after 80 to 100 minutes from starting of measurement. 4. The conductivity determined by the inversed auger hole method approached to a constant value at 5 or 6th run of measurement. 5. The hydraulic conductivity determined by the core sample method was greatly under estimated in comparison with the values obtained by other two methods.

  • PDF

EFFECTS OF ISOELECTRONIC IMPURITIES ON THE LIGHT EMISSION OF THE THIN-FILM ELECTROLUMINESCENCT DEVICES (박막 EL소자의 광방사에 있어서 등전자 불순물의 효과)

  • 박연수;곽민기;김현근;손상호;이상윤;이상걸
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.79-80
    • /
    • 1994
  • A systematic study on isoelectronic impurities in thin-film eletroluminescent devices (TFELD) has been made on the basis of the experimental analysis aimed at a survey for the blue-emitting materials. Codoping effects of isoelectronic impurities, such as oxygen(O), tellurium(Te), and lithium(Li), on the emissive characteristics of ZnS:Ce$^{3+}$ and ZnS:Tm$^{3+}$TFELD have been investigated by means of the X-ray diffraction studies, the Auger electron spectroscopy, the cathodoluminescent spectra, and the electroluminescent spectra. Experiment results reveal that oxygen codoping gives rise to an increase of the luminance, due to a suppression of the nonradiative energy transfer via sulfur vacancies Te codoping in ZnS:Ce$^{3+}$ TFELD result in a large change in the crystal field around Ce$^{3+}$ ions. Li codoping in ZnS:Tm$^{3+}$ TFELD causes the luminance to increase slightly, due to a lowering in the symmetry of Tm$^{3+}$ions. Likewise, the experimental results suggest strongly that an Auger-type enegy loss via lattece defects such an sulfur vacancies acts as a non-emissive in TFELD.ve in TFELD.

  • PDF

Characteristic analysis of GaN-based Light Emitting Diode(LED) (GaN 기반 발광 다이오드(LED)의 특성 분석)

  • Lee, Jae-Hyun;Yeom, Kee-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.686-689
    • /
    • 2012
  • In this paper, the GaN-based LED characteristics are analyzed using ISE-TCAD. The LED consists of GaN barriers, active region of InGaN quantum well, AlGaN EBL(Electron Blocking Layer) and AlGaN HBL(Hole Blocking Layer) on GaN buffer layer. The output power characteristics of LED considering Auger recombination rate, thickness of quantum well and number of quantum wells are analyzed and some criteria for the design of LED are proposed.

  • PDF